好文档 - 专业文书写作范文服务资料分享网站

有关高中数学教学计划4篇

天下 分享 时间: 加入收藏 我要投稿 点赞

有关高中数学教学计划4篇

高中数学教学计划 篇1 教材分析

集合概念的基本理论,称为集合论.它是近、现代数学的一个重要基础.一方面,许多重要的数学分支,如数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其反映的数学思想,在越来越广泛的领域中得到应用.在小学和初中数学中,学生已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(直线、圆)等,有了一定的感性认识.这节内容是初中有关内容的深化和延伸.首先通过实例引出集合与集合元素的概念,然后通过实例加深对集合与集合元素的理解,最后介绍了集合的常用表示方法,包括列举法,描述法,还给出了画图表示集合的例子.本节的重点是集合的基本概念与表示方法,难点是运用集合的两种常用表示方法———列举法与描述法正确表示一些简单的集合. 教学目标

1. 初步理解集合的概念,了解有限集、无限集、空集的意义,知道常用数集及其记法.

2. 初步了解“属于”关系的意义,理解集合中元素的性质. 3. 掌握集合的表示法,通过把文字语言转化为符号语言(集合语言),培养学生的理解、化归、表达和处理问题的能力. 任务分析

这节内容学生已在小学、初中有了一定的了解,这里主要根据实例引出概念.介绍集合的概念采用由具体到抽象,再由抽象到具体的思维方法,学生容易接受.在引出概念时,从实例入手,由具体到抽象,由浅入深,便于学生理解,紧接着再通过实例理解概念.集合的表示方法也是通过实例加以说明,化难为易,便于学生掌握. 教学设计 一、问题情境

1. 在初中,我们学过哪些集合? 2. 在初中,我们用集合描述过什么? 学生讨论得出:

在初中代数里学习数的分类时,学过“正数的集合”,“负数的集合”;在学习一元一次不等式时,说它的所有解为不等式的解集. 在初中几何里学习圆时,说圆是到定点的距离等于定长的点的集合.几何图形都可以看成点的集合.

3. “集合”一词与我们日常生活中的哪些词语的意义相近? 学生讨论得出:

“全体”、“一类”、“一群”、“所有”、“整体”,…… 4. 请写出“小于10”的所有自然数.

0,1,2,3,4,5,6,7,8,9.这些可以构成一个集合. 5. 什么是集合? 二、建立模型

1. 集合的概念(先具体举例,然后进行描述性定义)

(1)某种指定的对象集在一起就成为一个集合,简称集. (2)集合中的每个对象叫作这个集合的元素. (3)集合中的元素与集合的关系:

a是集合A中的元素,称a属于集合A,记作a∈A; a不是集合A中的元素,称a不属于集合A,记作aA. 例:设B={1,2,3},则1∈B,4 2. 集合中的元素具备的性质 B.

(1)确定性:集合中的元素是确定的,即给定一个集合,任何一个对象是否属于这个集合的元素也就确定了.如上例,给出集合B,4不是集合的元素是可以确定的.

(2)互异性:集合中的元素是互异的,即集合中的元素是没有重复的.

例:若集合A={a,b},则a与b是不同的两个元素. (3)无序性:集合中的元素无顺序.

例:集合{1,2}与集合{2,1}表示同一集合. 3. 常用的数集及其记法

全体非负整数的集合简称非负整数集(或自然数集),记作N. 非负整数集内排除0的集合简称正整数集,记作N*或N+; 全体整数的集合简称整数集,记作Z; 全体有理数的集合简称有理数集,记作Q; 全体实数的集合简称实数集,记作R. 4. 集合的表示方法

有关高中数学教学计划4篇

有关高中数学教学计划4篇高中数学教学计划篇1教材分析集合概念的基本理论,称为集合论.它是近、现代数学的一个重要基础.一方面,许多重要的数学分支,如数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其反映的数学思想,在越来越广泛的领域中得到应用.在小学和初中数学中,学生已经接触过集合,对于诸如数集(
推荐度:
点击下载文档文档为doc格式
8gstc83o8e3gzju6vsv034ka295j7z00cxz
领取福利

微信扫码领取福利

微信扫码分享