百度文库 - 好好学习,天天向上
大一上学期高数期末考试
一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. 设f(x)?cosx(x?sinx),则在x?0处有( ).
(A)f?(0)?2 (B)f?(0)?1(C)f?(0)?0 (D)f(x)不可导.
2.
设?(x)?1?xx,?(x)?3?331?x,则当x?1时( ).
(A)?(x)与?(x)是同阶无穷小,但不是等价无穷小; (B)?(x)与?(x)是等价无穷小;
(C)?(x)是比?(x)高阶的无穷小; (D)?(x)是比?(x)高阶的无穷小.
x3. 若
F(x)??0(2t?x)f(t)dt,其中f(x)在区间上(?1,1)二阶可导且
f?(x)?0,则( ).
(A)函数F(x)必在x?0处取得极大值; (B)函数F(x)必在x?0处取得极小值;
(C)函数F(x)在x?0处没有极值,但点(0,F(0))为曲线y?F(x)的拐点;(D)函数F(x)在x?0处没有极值,点(0,F(0))也不是曲线y?F(x)的拐点。4.
设f(x)是连续函数,且 f(x)?x?2?10f(t)dt , 则f(x)?(x2x2(A)2 (B)2?2(C)x?1 (D)x?2.
二、填空题(本大题有4小题,每小题4分,共16分) 2sinx5. limx?0(1?3x)? .
6. 已知cosxx是f(x)的一个原函数,则?f(x)?cosxxdx? . 2?2n?17.
nlim???n(cosn?cos22?n??cosn?)? .
12?x2arcsinx?1-11?x2dx?8. 2 . 三、解答题(本大题有5小题,每小题8分,共40分)
9. 设函数y?y(x)由方程
ex?y?sin(xy)?1确定,求y?(x)以及y?(0). -1
)
百度文库 - 好好学习,天天向上
1?x7求?dx.7x(1?x)10.
?x? 1?xe, x?0设f(x)?? 求?f(x)dx.?32?2x?x,0?x?1?11.
1012. 设函数f(x)连续,,且x?0g?(x)并讨论g?(x)在x?0处的连续性.
g(x)??f(xt)dtlimf(x)?Ax,A为常数. 求
13. 求微分方程xy??2y?xlnx满足
y(1)??19的解.
四、 解答题(本大题10分)
14. 已知上半平面内一曲线y?y(x)(x?0),过点(0,1),且曲线上任一点
M(x0,y0)处切线斜率数值上等于此曲线与x轴、y轴、直线x?x0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)
15. 过坐标原点作曲线y?lnx的切线,该切线与曲线y?lnx及x 轴围
成平面图形D.
(1) 求D的面积A;(2) 求D绕直线x = e 旋转一周所得旋转体的体积
V.
六、证明题(本大题有2小题,每小题4分,共8分)
16. 设函数f(x)在?0,1?上连续且单调递减,证明对任意的q?[0,1],
q1?f(x)dx?q?f(x)dx00.
?17. 设函数f(x)在?0,??上连续,且
??0f(x)dx?0,
?0f(x)cosxdx?0.证明:在?0,??内至少存在两个不同的点?1,?2,
x使f(?1)?f(?2)?0.(提示:设
F(x)??f(x)dx0)
-2
百度文库 - 好好学习,天天向上
解答
一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C
二、填空题(本大题有4小题,每小题4分,共16分)
1cos??5. e6 . 6. 2(xx)2?c.7. 2. 8.3三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导
ex?y(1?y?)?cos(xy)(xy??y)?0
y?(x)??ex?y?ycos(xy)ex?y?xcos(xy)x?0,y?0
,y?(0)??1
10. 解:u?x7 7x6dx?du 原式?17?(1?u)u(1?u)du?17?(1u?2u?1)du ?17(ln|u|?2ln|u?1|)?c ?1ln|x7|?2ln|1?x777|?C1 11. 解:??3f(x)dx??0xe?x12?3dx??02x?xdx
??0xd(?e?x)??1?301?(x?1)2dx
????xe?x?e?x?00???cos2?3???d?( 令x?1?sin?)2??
34?2e?10
12. 解:由f(0)?,知g(0)?0。
x1xt?uf(u)dug(x)?0
?f(xt)dt??0xx (x?0)
xf(x)??f(u)du0
g?(x)?x2 (x?0)x
?f(u)duf(x)
g?(0)?lim0x?0x2?limx?02x?A2
-3
.