好文档 - 专业文书写作范文服务资料分享网站

EMI-EMC设计(三)传导式EMI的测量技术 - 图文

天下 分享 时间: 加入收藏 我要投稿 点赞

这是「非对称模式」的例子。从此结果可以看出,「非对称模式」的一部分可以视为「不对称(CM)模式」,而它的另一部分可视为「对称(DM)模式」。

传导式EMI的测量

为了要测量EMI,我们必须使用一个「阻抗稳定网络(Impedance Stabilization Network;ISN)」。和ISN类似的LISN已被应用到离线的电源供应电路中,其全名是「线路阻抗稳定网络(Line Impedance Stabilization Network;LISN)」或「仿真的主要网络(Artificial Mains Network;AMN)」。如图三所示,那是一个简易的电路图。若产品想要通过「国际射频干扰特别委员会(International Special Committee on Radio Interference;CISPR)」所制定的「CISPR 22限制(limits)」规定,就必须采用符合CISPR 16规范所定义的LISN;CISPR 16是CISPR 22所参考的标准。

图三:一个CISPR LISN的简易电路图

使用LISN的目的是多重的。它是一个「干净的」交流电源,将电能供应给电源供应器。接收机或频谱分析仪可以利用它来读出测量值。它提供一个稳定的均衡阻抗,即使噪声是来自于电源供应器。最重要的是,它允许测量工作可以在任何地点重复进行。对噪声源而言,LISN就是它的负载。

假设在此LISN电路中,L和C的值是这样决定的:

电感L小到不会降低交流的电源电流(50/60Hz);但在期望的频率范围内(150 kHz to 30 MHz),它大到可以被视为「开路(open)」。电容C小到可以阻隔交流的电源电压;但在期望的频率范围内,它大到变成「短路(short)」。

上面的叙述(几乎)是为真的。在图三中,主要的简化部分是,缆线或接收机的输入阻抗已经被包含进去了。将一条典型的同轴缆线连接到一台测量仪器(分析仪或接收机或示波器…等)时,对一个高频讯号而言,此缆线的输入阻抗是50奥姆(因为传输线效应)。所以,当接收机正在测量这个讯号时,假设在L和E之间,LISN使用一个「继电/切换(relay/switch)电路」,将实际的50奥姆电阻移往相反的配对线路上,也就是在N和E之间。如此就能使所有的线路在任何时候都能保持均衡,不管是测量VL或VN。

选择50奥姆是为了要仿真高频讯号的输入阻抗,因为高频讯号所使用的主要导线之阻抗值近似于50奥姆。此外,它可以让一般的测量工作,在任何地点、任何时间重复地进行。值得注意的是,电信设备的通讯端口是使用「阻抗稳定网络」,它是使用150奥姆,而不是50奥姆;这是因为一般的「数据线路(data line)」之输入阻抗值近似于150奥姆。

图四:对DM和CM噪声源而言,LISN所代表的负载阻抗

为了了解VL和VN,请参考图四。共模电压是25Ω乘以流向E的电流值(或者是50Ω乘以Icm/2)。差模电压是100Ω乘以差模电流。因此,LISN提供下列的负载阻抗给噪声源(没有任何的输入滤波器存在):

CM负载阻抗是25Ω,DM负载阻抗是100Ω。

当LISN切换时,可以由下式得出噪声电压值: VL=25ХIcm+50ХIdm 或 VN=25ХIcm - 50ХIdm

这是否意味着只要在L-E和N-E上做测量,就可以知道CM和DM噪声的相对比例大小?

其实,许多人常有这样的错误观念:「如果来自于电源供应器的噪声大部分是属于DM的,则VL和VN的大小将会相等。如果噪声是属于CM的,则VL和VN的大小也会相等。但是,如果CM和DM的辐射大小几乎相等时,则VL和VN的测量值将不会相同。」

如果这样的观念正确的话,那就表示即使在一个离线的电源供应器中,L和N线路是对称的,但L和N线路上的辐射量还是不相等的。在某一个特殊的时间点,两线路上的个别噪声大小可能会不相等,但实际上,射频能量是以交流的电源频率,在两条线路之间「跳跃」着,如同工作电流一样。所以,任何侦测器测量此两条线路时,只要测量的时间超过数个电压周期,VL和VN的测量值差异将不会很大的。不过,极小的差异可能会存在,这是因为有各种不同的「不对称性」存在。当然,VL和VN的测量结果必须符合EMI的限制规定。

使用LISN后,就不需要分别测量CM和DM噪声值,它们是利用上述的代数公式求得的。但有时还是需要各别测量CM和DM噪声值,譬如:为了排除故障或诊断错误。幸好有一些聪明的方法可以达到各别测量的目的。我们举两个例子:

有一种装置称作「LISN MATE」,不过,目前已经很少被使用了。它会衰减DM噪声约50dB,但不会大幅衰减CM噪声(约仅衰减4dB)。它的电路如图五所示。

图五:LISN MATE

图六是一种以变压器为基础的装置,它是利用共模电压无法使变压器工作的原理;因为本质上需要差动的一次测电压,才能使变压器线圈内的磁通量「摆动(swing)」。它不像LISN MATE,此时CM和DM噪声是一起输出。

图六:CM和DM分离器

不过,上述的两种方法都需要修改LISN电路。因为一般的LISN只提供VL或VN,无法同时提供这两者。最好是购买CM和DM噪声有分离输出的LISN。此外,也应该要有总和检视的功能,以确定是否有遵守技术规范的限制。

传导式EMI的限制

对EMI而言,滤波器是做何用途呢?表一列出了FCC和CISPR 22的EMI限制规定。此表中比较特殊的是,除了可用dBμV计量以外,也可以用mV来计量。这对那些讨厌使用对数(logarithm)计算的设计者而言很便利。

表一:传导式EMI的限制

在对数的定义里:db=20log10[V1/V2] ,V1/V2是输出入电压的比值。所以,dBμV表示是以IμV为对数的比较基准。下式是mV转换成dBμV的公式:

(dBμV)=20Хlog[mV/10-6]

譬如:0.25mV可以透过公式,得出:20log10[0.25Х1000/1] ≌48 dBμV。 而dBμV转换成mV的公式如下: (mV)=(10(dbμV)/20)Х10-3

EMI-EMC设计(三)传导式EMI的测量技术 - 图文

这是「非对称模式」的例子。从此结果可以看出,「非对称模式」的一部分可以视为「不对称(CM)模式」,而它的另一部分可视为「对称(DM)模式」。传导式EMI的测量为了要测量EMI,我们必须使用一个「阻抗稳定网络(ImpedanceStabilizationNetwork;ISN)」。和ISN类似的LISN已被应用到离线的电源供应电路中,其全名是
推荐度:
点击下载文档文档为doc格式
8fw2519cfj721et5igw0
领取福利

微信扫码领取福利

微信扫码分享