好文档 - 专业文书写作范文服务资料分享网站

西北工业大学附属中学数学平面图形的认识(一)检测题(Word版 含答案)

天下 分享 时间: 加入收藏 我要投稿 点赞

一、初一数学几何模型部分解答题压轴题精选(难)

1.

求证:DE=BD+CE;

(1)如图①,已知:Rt△ABC中,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,(2)如图②,将(1)中的条件改为:△ABC中,AB=AC,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;

(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.

【答案】 (1)证明:∵BD⊥直线m,CE⊥直线m, ∴∠BDA=∠CEA=90°, ∵∠BAC=90°, ∴∠BAD+∠CAE=90°, ∵∠BAD+∠ABD=90°, ∴∠CAE=∠ABD, 在△ADB和△CEA中,

∴△ADB≌△CEA(AAS), ∴AE=BD,AD=CE, ∴DE=AE+AD=BD+CE;

(2)解:结论DE=BD+CE成立;理由如下: ∵∠BDA=∠BAC=α,

∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α, ∴∠CAE=∠ABD, 在△ADB和△CEA中,

∴△ADB≌△CEA(AAS), ∴AE=BD,AD=CE,

∴DE=AE+AD=BD+CE;

(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC, ∴∠CAE=∠ABD, 在△ABD和△CEA中,

∴△ABD≌△CEA(AAS), ∴S△ABD=S△CEA ,

设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h, ∴S△ABC= BC?h=12,S△ACF= CF?h, ∵BC=2CF, ∴S△ACF=6,

∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6, ∴△ABD与△CEF的面积之和为6.

【解析】【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,由AAS证得△ADB≌△CEA,则AE=BD,AD=CE,即可得出结论;(2)由∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA即可得出答案;(3)由∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA,得出S△ABD=S△CEA , 再由不同底等高的两个三角形的面积之比等于底的比,得出S△ACF即可得出结果.

2.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.

(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为________度;

(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;

(3)在上述直角三角板从图1逆时针旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.

【答案】 (1)90

(2)解:如图3,∠AOM﹣∠NOC=30°. 设∠AOC=α,由∠AOC:∠BOC=1:2可得 ∠BOC=2α.

∵∠AOC+∠BOC=180°, ∴α+2α=180°. 解得 α=60°. 即∠AOC=60°.

∴∠AON+∠NOC=60°.① ∵∠MON=90°,

∴∠AOM+∠AON=90°.②

由②﹣①,得∠AOM﹣∠NOC=30°;

(3)(ⅰ)如图4,当直角边ON在∠AOC外部时, 由OD平分∠AOC,可得∠BON=30°. 因此三角板绕点O逆时针旋转60°. 此时三角板的运动时间为: t=60°÷15°=4(秒).

(ⅱ)如图5,当直角边ON在∠AOC内部时, 由ON平分∠AOC,可得∠CON=30°. 因此三角板绕点O逆时针旋转240°. 此时三角板的运动时间为: t=240°÷15°=16(秒).

西北工业大学附属中学数学平面图形的认识(一)检测题(Word版 含答案)

一、初一数学几何模型部分解答题压轴题精选(难)1.求证:DE=BD+CE;(1)如图①,已知:Rt△ABC中,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,(2)如图②,将(1)中的条件改为:△ABC中,AB=AC,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结
推荐度:
点击下载文档文档为doc格式
8fo5441pfa4uc568cqjj1x2cx44ea901a85
领取福利

微信扫码领取福利

微信扫码分享