导数题型梳理归纳
题型一:含参分类讨论 类型一:主导函数为一次型
例1:已知函数f?x??ax?a?lnx,且f?x??0.求a的值 解:f??x??ax?1.当a?0时,f??x??0,即f?x?在?0,???上单调递减,所以x当?x0?1时,f?x0??f?1??0,与f?x??0恒成立矛盾.
当a?0时,因为0?x?11时f??x??0,当x?时f??x??0,所以aa1?1?f?x?min?f??,又因为f?1??a?a?ln1?0,所以?1,解得a?1
a?a? 类型二:主导函数为二次型
32 例2: 已知函数f?x??x?kx?x?k?0?.讨论f?x?在?k,?k?上的单调性. 2 解:f?x?的定义域为R,f??x??3x?2kx?1?k?0?,其开口向上,对称轴
x?kk,且过?0,1?,故k??0??k,明显不能分解因式,得??4k2?12. 33(1)当??4k2?12?0时,即?3?k?0时,f??x??0,所以f?x?在?k,?k?
上单调递增;
2 (2)当??4k2?12?0时,即k??3时,令f??x??3x?2kx?1?0,解得:
222k?k?3k?k?3 x1?,因为f??k??k?1?0,f??0??1?0,,x2?33所以两根均在?k,0?上.
?k?k2?3??k?k2?3?,?k?上单 因此,结合f??x?图像可得:f?x?在?k,?,?33?????????k?k2?3k?k2?3?,调递增,在??上单调递减. 33????类型三:主导函数为超越型
x例3:已知函数f?x??ecosx?x.求函数f?x?在区间?0,
???
上的最值. ??2?
解:定义域?0,则h??x??e 当x??0,x???xx?fx?ecosx?sinx?1hx?e???????cosx?sinx??1,,,令?2???cosx?sinx?sinx?cosx???2exsinx.
???????0,?递减,hx?0hx????,可得,即在可得h?x??h?0??f??0??0,??22????
则f?x?在x??0,???????fx?f0?1,fx?f??. ??????递减,所以??max2?2???2?类型四:复杂含参分类讨论
3 例4:已知函数f?x??x?3x?a?a?R?.
若f?x?在??1,1?上的最大值和最小值分别记为M?a?,m?a?,求M?a??m?a?.
32???x?3x?3a,x?a?3x?3,x?a 解:f?x??x?3x?a??3 ,f??x???2???x?3x?3a,x?a?3x?3,x?a33 ①当a??1时,有x?a,故f?x??x?3x?3a,所以f?x?在??1,1?上是增
函数,M?a??f?1??4?3a,m?a??f??1???4?3a,故M?a??m?a??8.
3 ②当?1?a?1时,若x??a,1?,f?x??x?3x?3a,在?a,1?上是增函数;若
x???1,a?,f?x??x3?3x?3a,在??1,a?上是减函数,
M?a??max?f?1?,f??1??,m?a??f?a??a3,由于f?1??f??1???6a?2
因此当?1?a?113时,M?a??m?a???a?3a?4;当?a?1时,33M?a??m?a???a3?3a?2.
3 ③当a?1时,有x?a,故f?x??x?3x?3a,此时f?x?在??1,1?上是减函
数,因此M?a??f??1??2?3a,m?a??f?1???2?3a,故
M?a??m?a??4.
题型二:利用参变分离法解决的恒成立问题
类型一:参变分离后分母跨0
2x 例5:已知函数f?x??x?4x?2,g?x??e?2x?2?,若x??2时,f?x??kg?x?,
求k的取值范围.
2x 解:由题意x?4x?2?2ke?x?1?,对于任意的x??2恒成立.
当x??1,上式恒成立,故k?R;
x2?4x?2x2?4x?2?x??1?, 当x??1,上式化为k?,令h?x??2ex?x?1?2ex?x?1? h??x???xex?x+2?2e?x?1?x22k?h?0??1 ,所以h?x?在x?0处取得最大值,
x2?4x?2h?x?单调递增, 当?2?x??1时,上式化为k?,故h?x?在x??22ex?x?1?2处取得最小值,k?h??2??e.
2 综上,k的取值范围为??1,e??.
类型二:参变分离后需多次求导
例6:已知函数f?x???2?a??x?1??2lnx,?a?R?对任意的x??0,恒成立,求a的最小值.
解:即对x??0,?,a?2???1??,f?x??02???1?2?2lnx恒成立. x?122?2lnx?2?x?1??2lnx2lnx?1?,x??0,?,则l??x???x 令l?x??2? ?x22x?12???x?1??x?1? 再令m?x??212?2?1?x??1??2lnx?2,x??0,?,m??x???2???0 2xxxx?2? m?x?在?0,?上为减函数,于是m?x??m???1?2??1???2?2ln2?0, 2??
导数压轴题题型梳理归纳
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)