好文档 - 专业文书写作范文服务资料分享网站

伺服电机惯量问题

天下 分享 时间: 加入收藏 我要投稿 点赞

伺服电机惯量问题

在伺服系统选型及调试中,常会碰到惯量问题。 其具体表现为:

在伺服系统选型时,除考虑电机的扭矩和额定速度等等因素外,我们还需要先计算得知机械系统换算到电机轴的惯量,再根据机械的实际动作要求及加工件质量要求来具体选择具有适宜惯量大小的电机;在调试时,正确设定惯量比参数是充分发挥机械及伺服系统最正确效能的前提。此点在要求高速高精度的系统上表现尤为突出,这样,就有了惯量匹配的问题。

一、什么是“惯量匹配〞?

1、 根据牛顿第二定律:“进给系统所需力矩T = 系统传动惯量

J × 角加速度θ角〞。 加速度θ影响系统的动态特性,θ越小,那么由控制器发出指令到系统执行完毕的时间越长,系统反响越慢。如果θ变化,那么系统反响将忽快忽慢,影响加工精度。由于马达选定后最大输出T值不变,如果希望θ的变化小,那么J应该尽量小。

2、 进给轴的总惯量“J=伺服电机的旋转惯性动量JM + 电机

轴换算的负载惯性动量JL。负载惯量JL由〔以平面金切机床

1 / 6

为例〕工作台及上面装的夹具和工件、螺杆、联轴器等直线和旋转运动件的惯量折合到马达轴上的惯量组成。 JM为伺服电机转子惯量,伺服电机选定后,此值就为定值,而JL那么随工件等负载改变而变化。如果希望J变化率小些,那么最好使JL所占比例小些。这就是通俗意义上的“惯量匹配〞。

二、“惯量匹配〞如何确定?

传动惯量对伺服系统的精度,稳定性,动态响应都有影响。 惯量大,系统的机械常数大,响应慢,会使系统的固有频率下降,容易产生谐振,因而限制了伺服带宽,影响了伺服精度和响应速度,惯量的适当增大只有在改善低速爬行时有利,因此,机械设计时在不影响系统刚度的条件下,应尽量减小惯量。

衡量机械系统的动态特性时,惯量越小,系统的动态特性反响越好;惯量越大,马达的负载也就越大,越难控制,但机械系统的惯量需和马达惯量相匹配才行。 不同的机构,对惯量匹配原那么有不同的选择,且有不同的作用表现。 不同的机构动作及加工质量要求对JL与JM大小关系有不同的要求,但大多要求JL与JM的比值小于十以。一句话,惯性匹配确实定需要根据机械的工艺特点及加工质量要求来确定。 对于根底金属切削机床,对于伺服电机来说,一般负载惯量建议应小于电机惯量的5倍。

惯量匹配对于电机选型很重要的,同样功率的电机,有些品牌

2 / 6

有分轻惯量,中惯量,或大惯量。其实负载惯量最好还是用公式计算出来。常见的形体惯量计算公式在以前学的书里都有现成的〔可以去查机械设计手册〕。 我们曾经做过一试验,在一伺服电机的轴伸,加一大的惯量盘准备用来做测试,结果是:伺服电机低速时停不住,摇头摆尾,不停地振荡怎么也停不下来。 后来改为:在两个伺服电机的轴伸对接加装联轴器,对其中一个伺服电机通电,作为动力即主动,另一个伺服电机作为从动,即做为一个小负载。原来那个摇头摆尾的伺服电机,启动、运动、停止,运转一切正常!

三、惯量的理论计算的功式?

惯量计算都有公式,至于多重负载,比方齿轮又带齿轮,或涡轮蜗杆传动,只要分别算出各转动件惯量然后相加即是系统惯量,电机选型时建议根椐不同的电机进展选配。 负载的转动惯量肯定是要设计时通过计算算出来拉,如果没有这个值,电机选型肯定是不那么合理的,或者肯定会有问题的,这是选伺服的最重要的几个参数之一。至于电机惯量,电机样本手册上都有标注。 当然,对某些伺服,可以通过调整伺服的过程测出负载的惯量,作为理论设计中的计算的参考。毕竟在设计阶段,很多类似摩擦系数之类的参数只能根据经历来猜,不可能准确。 理论设计中的计算的公式:〔仅供参考〕 通常将转动惯量J用飞轮矩GD2来表示,它们之间的关系为 J=mp^2= GD^2/4g

式中 m与G-转动局部的质量〔kg〕与重量〔N〕;

3 / 6

伺服电机惯量问题

伺服电机惯量问题在伺服系统选型及调试中,常会碰到惯量问题。其具体表现为:在伺服系统选型时,除考虑电机的扭矩和额定速度等等因素外,我们还需要先计算得知机械系统换算到电机轴的惯量,再根据机械的实际动作要求
推荐度:
点击下载文档文档为doc格式
8e9zg9rrh74c2db011p1797950lpza00fcp
领取福利

微信扫码领取福利

微信扫码分享