. . . .
第十章 曲线积分与曲面积分答案
一、选择题 1.曲线积分
??f(x)?ex???sinydx?f(x)cosydy与路径无关,其中f(x)有一阶连续偏L导数,且f(0)?0,则f(x)? B
A.
1?xx11(e?e) B. (ex?e?x) C. (ex?e?x) D.0 2222.闭曲线C为x?y?1的正向,则
C??ydx?xdy? C
x?y A.0 B.2 C.4 D.6 3.闭曲线C为4x?y?1的正向,则
22C??ydx?xdy? D
4x2?y2A.?2? B. 2? C.0 D. ? 4.?为YOZ平面上y?z?1,则
22222(x?y?z)ds? D ???11? D. ? 42222225.设C:x?y?a,则?(x?y)ds? C
A.0 B. ? C.
CA.2?a B. ?a C. 2?a D. 4?a
22336. 设?为球面x?y?z?1,则曲面积分
222??1??dSx?y?z12222的值为 [ B ]
A.4? B.2? C.? D.?
7. 设L是从O(0,0)到B(1,1)的直线段,则曲线积分
?Lyds?[ C ]
A. 8. 设I=?2211 B. ? C. D. ?
2222Lyds 其中L是抛物线y?x2上点(0, 0)与点(1, 1)之间的一段弧,
则I=[D ]
A.
.下载可编辑.
555555?155?1 B. C. D. 612612. . . .
9. 如果简单闭曲线 l 所围区域的面积为 ?,那么 ? 是( D )
11; B. xdx?ydyydy?xdx; ??ll2211 C. ?ydx?xdy; D. ?xdy?ydx。
2l2l A.
10.设S:x?y?z?R(z?0),S1为S在第一卦限中部分,则有 C
2222A.C.
??xds?4??xds B.??yds?4??yds
SS1SS1??zds?4??zds D.??xyzds?4??xyzds
SS1SS1二、填空题
1. 设L是以(0, 0), (1, 0), (1, 1), (0, 1)为顶点的正方形边界正向一周,则曲线积分
?Lydx?(ey2?x)dy? -2
2.S为球面x2?y2?z2?a2的外侧,则??(y?z)dydz?(z?x)dzdx?(x?y)dxdy?0
s3.
x2?y2?1x?y?ydx?xdy22 =?2?
4.曲线积分
?C(x2?y2)ds,其中C是圆心在原点,半径为a的圆周,则积分值为2?a3
5.设∑为上半球面z?4?x2?y22?z?0?,则曲面积分???x2?y2?z2?ds= 32π
?6. 设曲线C为圆周x?y?1,则曲线积分
2??xC2?y2?3x?ds? 2? . 7. 设C是以O(0,0),A(1,0),B(0,1)为顶点的三角形边界,则曲线积分8. 设?为上半球面z?4?x?y,则曲面积分
22?C(x?y)ds?1+的值为
2 ??1??dsx2?y2?z28?。 39. 光滑曲面z=f(x,y)在xoy平面上的投影区域为D,则曲面z=f(x,y)的面积是
S???1?(D?z2?z)?()2d? ?x?y.下载可编辑.
. . . .
10.设L是抛物线y?x上从点(2,8)到点(0,0)的一段弧,则曲线积分(2x?4y)dx?
3?L12
11、设?为螺旋线x?cost,y?sint,z?3t上相应于t从0到?的一段弧,
则曲线积分I??(x2?y2?z2)ds? 2??1??2? 。
?12、设L为x?y?a的正向,则
222xdy?ydx?Lx2?y2? 2? 。
三、计算题 1.e?Lx2?y2ds,其中L为圆周x2?y2?1,直线y?x及x轴在第一象限所围图形的边
界。
解:记线段OA方程y?x,0?x??x?cos?2?,圆弧AB方程?,0??? 24?y?sin?线段OB方程y?0,0?x?1。
则原式=
OA?ex2?y2ds+
AB?ex2?y2ds+
OB?ex2?y2ds=?22?0e2x2dx+?4ed?+?exdx
001=2(e?1)? 2.
?4e #
?Lx2?y2dx?y[xy?ln(x?x2?y2)]dy,其中L为曲线y?sinx,0?x??与直线
段y?0,0?x??所围闭区域D的正向边界。 解:利用格林公式,P?
x2?y2,Q?y[xy?ln(x?x2?y2)],则
,?P??yyx2?y2?Qy ?y2?22?xx?y故原式=
??(D?Q?P?)dxdy???y2dxdy??x?yD22??0dx?sinx0y2dy=
1?34sinxdx? # ?039223.ydx?xdy,其中L为圆周x?y?R的上半部分,L的方向为逆时针。
?L2.下载可编辑.
. . . .
解:L的参数方程为?故原式=
?x?Rcost,t从0变化到?。
?y?Rsint??0[R2sin2t(?Rsint)?R2cos2t(Rcost)]dt
=R34322[(1?cost)(?sint)?(1?sint)cost]dt=?R # ?03?224.求抛物面z?x?y被平面z?1所割下的有界部分?的面积。
解:曲面?的方程为z?x?y,(x,y)?D,这里D为?在XOY平面的投影区域
22{(x,y)x2?y2?1}。
故所求面积=
??D2?0221?zx?zydxdy???D1?4(x2?y2)dxdy
??d??101?4r2rdr?55?1? # 6222x5、计算(esiny?my)dx?(excosy?mdy),其中L为圆(x?a)?y?a(a?0)的
?L上半圆周,方向为从点A(2a,0)沿L到原点O。
解:添加从原点到点A的直线段后,闭曲线所围区域记为D,利用格林公式
P?(exsiny?my),Q?excosy?m,
于是(esiny?my)dx?(ecosy?m)dy+
?P?Q?excosy?m,?excosy ?y?x?LxxOA?xx(esiny?my)dx?(ecosy?m)dy ?m?a2=m??dxdy?
2D而
OA??(exsiny?my)dx?(ecosy?m)dy=?0dx?0?0,于是便有
x02a (esiny?mydx)?e(?Lxxm?a2
# cosy?mdy)=2
2222222226.(y?z)dx?(z?x)dy?(x?y)dz,其中L为球面x?y?z?1在第一
?L卦限部分的边界,当从球面外看时为顺时针。
解:曲线由三段圆弧组成,设在YOZ平面内的圆弧AB的参数方程
.下载可编辑.
. . . .
?x?0?? ?y?cost,t从变化到0。
2?z?sint?于是
0422222222== [sint(?sint)?cost(cost)]dt(y?z)dx?(z?x)dy?(x?y)dz???32AB由对称性即得
?(yL2?z2)dx?(z2?x2)dy?(x2?y2)dz?3?(y2?z2)dx?(z2?x2)dy?(x2?y2)dz?4AB # 7.
??(x?1)dydz?(y?1)dzdx?(z?1)dxdy,其中?为平面x?y?z?1,x?0,y?0,
?z?0所围立体的表面的外侧。
解:记?1为该表面在XOY平面内的部分,?2为该表面在YOZ平面内的部分,
?3为该表面在XOZ平面内的部分,?4为该表面在平面x?y?z?1内的部分。 ?1的方程为z?0,0?y?1?x,0?x?1,根据定向,我们有
??(x?1)dydz?(y?1)dzdx?(z?1)dxdy=??(z?1)dxdy=??1?10?x?10?y?1?x??1dxdy??
2同理,
1 (x?1)dydz?(y?1)dzdx?(z?1)dxdy????2?21 (x?1)dydz?(y?1)dzdx?(z?1)dxdy????2?3?4的方程为z?1?x?y,0?y?1?x,0?x?1,故
??(z?1)dxdy??40?x?10?y?1?x??(2?x?y)dxdy?2, 3由对称性可得
??(x?1)dydz??4??(y?1)dzdx??42, 3.下载可编辑.