f?(xj)?an?(xj?xi),再由差商的性质1和3可知:
i?1i?jn?f?(xj?1nxkjj)??j?1nxkjan?(xj?xi)i?1i?jn1k1(xk)(n?1),从而得证。 ?x[x1,?,xn]?anan(n?1)!15、证明n阶均差有下列性质:
1)若F(x)?cf(x),则F[x0,x1,?,xn]?cf[x0,x1,?,xn];
2)若F(x)?f(x)?g(x),则F[x0,x1,?,xn]?f[x0,x1,?,xn]?g[x0,x1,?,xn]。
F[x0,x1,?,xn]??j?0nF(xj)?(xi?0i?jnj?xi)??j?0ncf(xj)?(xi?0i?jnj?xi)。
[证明]1)
?c?j?0nf(xj)?(xi?0i?jn?cf[x0,x1,?,xn]j?xi)F(xj)??j?0nF[x0,x1,?,xn]??j?0nf(xj)?g(xj)?(xi?0i?jnnj?xi)?(xi?0i?jnj?xi)。
2)
??j?0nf(xj)?(xi?0i?j7nj?xi)??j?0ng(xj)?(xi?0i?j?f[x0,x1,?,xn]?g[x0,x1,?,xn]j?xi)f(8)(?)0??0。16、f(x)?x?x?3x?1,求f[2,2,?,2],f[2,2,?,2]? 8!8!4017018f(7)(?)7!??1,f[20,21,?,28]。 [解]f[2,2,?,2]?7!7!01717、证明两点三次埃尔米特插值余项是
R3(x)?f(4)(?)(x?xk)2(x?xk?1)2/4!,???xk,xk?1?,
并由此求出分段三次埃尔米特插值的误差限。
8hmaxfk?。 [解]见P30与P33,误差限为?(h)?270?k?n18、XXXXXXXXXX.
19、求一个次数不高于4次的多项式P(x),使它满足P(0)?P?(0)?0,
P(1)?P?(1)?1,P(2)?1。
[解]设P(x)?a4x4?a3x3?a2x2?a1x?a0,则P?(x)?4a4x3?3a3x2?2a2x?a1,再由P(0)?P?(0)?0,P(1)?P?(1)?1,P(2)?1可得:
???0?a0?0?P(0)?a0??0?P?(0)?a?0?a11????9解得1?P(1)?a?a?a?a?a???a2。从而 43210?1?P?(x)?4a?3a?2a?a?44321??3???2?a3?1?P(2)?16a4?8a3?4a2?2a1?a0??1?a4??4143392x22x2(x?3)2P(x)?x?x?x?(x?6x?9)?。
4244420、设f(x)?C[a,b],把?a,b?分为n等分,试构造一个台阶形的零次分段插值函数?n(x),并证明当n??时,?n(x)在?a,b?上一致收敛到f(x)。
supf(x)?inf[解]令?i(x)?xi?1?x?xixi?1?x?xif(x),i?1,2,3,?,n。
221、设f(x)?1/(1?x2),在?5?x?5上取n?10,按等距节点求分段线性插值函数Ih(x),计算各节点中点处的Ih(x)与f(x)的值,并估计误差。 [解]由题意可知,h?1,从而当x??xk,xk?1?时,
Ih(x)?fklk?fk?1lk?1?x?xk1x?xk?11?1?k2xk?xk?11?(k?1)2xk?1?xk11??(x?x)?(x?xk)k?122h(1?k)h[1?(k?1)]。
22、求f(x)?x2在?a,b?上的分段线性插值函数Ih(x),并估计误差。
[解]设将?a,b?划分为长度为h的小区间a?x0?x1???xn?b,则当
x??xk,xk?1?,k?0,1,2,?,n?1时,
Ih(x)?fklk?fk?1lk?1?x(x2k?12k22x?xk?1x?xkxk2?1(x?xk)?xk(x?xk?1)?x?xk?1?xk?xk?1xk?1?xkxk?1?xk2k2k?1k?x)?xx?xxk?1?xk2k?1kx
?x(xk?1?xk)?xk?1xk从而误差为R2(x)?f??(?)(x?xk)(x?xk?1)?(x?xk)(x?xk?1), 2!h2故R2(x)?(x?xk)(x?xk?1)?。
423、求f(x)?x4在?a,b?上的分段埃尔米特插值,并估计误差。
[解]设将?a,b?划分为长度为h的小区间a?x0?x1???xn?b,则当
x??xk,xk?1?,k?0,1,2,?,n?1时,
Ih(x)?fk?k?fk?1?k?1?fk??k?fk??1?k?1(x)4?x?xk?1???xk?x?x??k?1??k22?x?xk?1?2?xk?1?xk??4?x?xk??x?k?1??x?xk??k?12????2?x?xk?1???, 1?2??xk?xk?1??3?x?xk?1?3?x?xk??4xk?(x?xk)?4xk?1???x?xk?xk?xk?1??k?1???(x?xk?1)?f(4)(?)(x?xk)2(x?xk?1)2?(x?xk)2(x?xk?1)2, 从而误差为R2(x)?4!h4故R2(x)?(x?xk)(x?xk?1)?。
162224、给定数据表如下: xj 0.25 0.30 0.39 0.45 0.53 yj 0.5000 0.5477 0.6245 0.6708 0.7280 试求三次样条函数S(x),并满足条件: 1)S?(0.25)?1.0000,S?(0.53)?0.6868; 2)S??(0.25)?S??(0.53)?0。
[解]由h0?0.30?0.25?0.05,h1?0.39?0.30?0.09,h2?0.45?0.39?0.06,
h3?0.53?0.45?0.08,及(8.10)式?j?hjhj?1?hj,?j?hj?1hj?1?hj,(j?1,?,n?1)可知,?1?h1h20.0990.062????, ,?2?h0?h10.05?0.0914h1?h20.09?0.065?3?h30.084??,
h2?h30.06?0.087h0h10.0550.093????, ,?2?h0?h10.05?0.0914h1?h20.09?0.065h20.063??,
h2?h30.06?0.087?1??3?由(8.11)式gj?3(?jf[xj?1,xj]??jf[xj,xj?1])(j?1,?n?1)可知,
9f(x1)?f(x0)5f(x2)?f(x1)g1?3(?1f[x0,x1]??1f[x1,x2])?3[?]14x1?x014x2?x190.5477?0.500050.6245?0.5477?3?(???)140.30?0.25140.39?0.309477576819279?3?(???)??2.754114500149007000g2?3(?2f[x1,x2]??2f[x2,x3])?3[2f(x2)?f(x1)3f(x3)?f(x2)?]5x2?x15x3?x2。 。
20.6245?0.547730.6708?0.6245?3?(???)50.39?0.3050.45?0.39276834634?256?3?463?3?(???)??2.413590056001000g3?3(?3f[x2,x3]??3f[x3,x4])?3[4f(x3)?f(x2)3f(x4)?f(x3)?]7x3?x27x4?x340.6708?0.624530.7280?0.6708?3?(???)70.45?0.3970.53?0.45446334724?463?9?1181457?3?(???)???2.0814760078001400700。从而
5??209???14?2.7541??1.0000??2.1112????m1??14??23?????,解得 1)矩阵形式为:?2m?2.413?2.4132?????55?????????1.7871???m3???2.0814?3?0.6868??4?02?7????7???m1??0.9078?n?m???0.8278?,从而S(x)?[y?(x)?m?(x)]。
?jjjj?2???j?0??0.6570???m3???2)此为自然边界条件,故
g0?3f[x0,x1]?3?f(x1)?f(x0)0.5477?0.5000477?3??3??2.862;
x1?x00.30?0.25500f(xn)?f(xn?1)0.7280?0.6708572?3??3??2.145,
xn?xn?10.53?0.45800gn?3f[xn?1,xn]?3?
??2??9?14?矩阵形式为:?0???0???0?n005201423255402740071?0??0??m0??2.862???m???2.75411?????0??m2???2.413?,可以解得?????2.0814m?3??3???????7??m4??2.145??2???m0??m??1??m2?,从而???m3??m??4?S(x)??[yj?j(x)?mj?j(x)]。
j?025、若f(x)?C2[a,b],S(x)是三次样条函数,证明
1)?[f??(x)]2dx??[S??(x)]2dx??[f??(x)?S??(x)]2dx?2?S??(x)[f??(x)?S??(x)]dx;
aaaabbbb2)若f(xi)?S(xi)(i?0,1,?,n),式中xi为插值节点,且a?x0?x1???xn?b 则?S??(x)[f??(x)?S??(x)]dx?S??(b)[f?(b)?S?(b)]?S??(a)[f?(a)?S?(a)]。
ab?ba[f??(x)?S??(x)]2dx?2?S??(x)[f??(x)?S??(x)]dxabab??[f??(x)?S??(x)]2?2S??(x)[f??(x)?S??(x)]dx[解]1)??{[f??(x)?S??(x)]?2S??(x)}[f??(x)?S??(x)]dxab。
??[f??(x)?S??(x)][f??(x)?S??(x)]dx??[f??(x)]2?[S??(x)]2dxaabb??ba[f??(x)]2dx??[S??(x)]2dxab2)由题意可知,S???(x)?A,x??a,b?,所以