五年级数学上册教案全套(人教版)
第一单元 小数乘法 第1课时 小数乘整数
)(
教材第2~3页的内容。
1.使学生理解小数乘整数的算理,掌握小数乘整数的计算方法,会熟练地进行笔算。
2.使学生经历将小数乘整数转化为整数乘整数的过程,自主地探索小数乘整数的计算方法,渗透转化的数学思想,培养学生的逻辑推理能力。
重点:掌握小数乘整数的计算方法。 难点:理解小数乘整数的算理。
课件。
师:秋高气爽的假日是放风筝的好时机。天空中飘扬着形状各异、五彩缤纷的风筝。课件出示“放风筝”的情境。
师:大家想放风筝吗?那我们先到风筝店去看看。
课件出示“买风筝”的情境。(教材第2页例1的主题图。) 师:从图中你能看出哪些数学信息? 师:这节课我们就一起先来解决“买3个蝴蝶风筝多少钱”的问题,你能列出算式吗?(教师板书:3.5×3=。)
师:这个算式和我们以前学过的算式有什么不同呢?
师:今天我们就来学习小数乘整数。(板书课题:小数乘整数。)
1.教学例1。
(1)师:怎样计算3.5×3呢?
给足时间,让每一位学生根据自己的知识和经验独立计算。教师巡视,注意发现学生的不同计算思路。
指名同学上台展示不同计算思路。 生1:3.5+3.5+3.5=10.5(元)。
生2:3.5元=35角,35×3=105(角),105角=10.5元。
生3:3.5元=3元5角,3元×3=9元,5角×3=15角,9元+15角=10.5元。
组织全班学生对上述不同解法逐一进行分析和评价。
(2)师:上述几种算法中,你认为哪种算法比较简便?这种算法的关键是什么? 学生分析、对比、讨论后,引导学生用简洁的话总结概括:先把3.5元转化为35角,再计算35×3,最后将结果105角转化成10.5元。
教师边小结边适时板书(或课件动态呈现)如下竖式计算过程:
)(
× 1 把3.5元看作35角
3. 0. 5 3 5 元 元 ――→
× 1 3 0 5 3 5 角 角 把3.5元看作35角。
――→
(3)小结:刚才我们在解决“买3个蝴蝶风筝多少钱”的问题时,想到了各种不同的计算方法。我们发现以“元”作单位的小数乘整数,可以转化成以“角”(或“分”)作单位的整数乘整数来进行计算。
(4)练习:教材第2页“做一做”第1题。
学生独立完成,教师指名演板。重点评价“把4.6元看作46角”进行计算的方法。 2.教学例2。
课件出示教材第3页例2。
(1)师:0.72不是钱数,怎样计算?
先让学生独立思考,再引导学生提出:能不能转化成整数来计算? (2)学生尝试列竖式计算。(教师巡视,了解学生的计算方法。)
(3)全班集体交流转化过程和计算方法,教师适时板演(或课件演示)乘法竖式的计算过程,帮助学生理解算理算法。
(教师重点引导学生理解三点:怎样把因数0.72转化成整数,乘得的积应如何处理,积末尾的0如何处理。)
由于因数0.72化成整数72必须“×100”,所以要使积不变,积360应“÷100”。
× ――→
÷100
――→
× 3 7 6 2 5 0 ×100
0. 3. 7 6 2 5 0
(4)师:3.60是最简小数吗?(不是)提醒学生,乘得的积如果不是最简小数,可以根据小数的基本性质将积中小数末尾的0去掉。
回顾总结。
(1)引导学生回顾3.5×3和0.72×5的计算过程。
(2)提问:想一想,在计算小数乘整数时,你先做什么?再做什么? 最后做什么?
(3)引导学生在理解的基础上归纳小数乘整数的计算方法:先将小数转化为整数,然后按整数乘法算出积,最后确定小数点的位置。(因数有几位小数,就从积的右边起数出几位,点上小数点。若积的末尾有0,末尾的0可以去掉。)
1.小数乘整数与整数乘整数的对比。(教材第3页“做一做”第1题。)
)(
(1)引导学生审题,明确题目要求,学生独立完成。 (2)组织学生交流、讨论,归纳小数乘整数与整数乘整数的不同:小数乘整数中有一个因数是小数,整数乘整数中两个因数都是整数;小数乘整数的积中,若小数末尾有0,这个0可以去掉,但整数乘整数的积末尾的0不能去掉。
2.确定积的小数点的位置。(教材第3页“做一做”第2题。)
(1)学生独立完成。
(2)组织学生交流:你是怎样确定积的小数点的位置的?积末尾的0是怎样处理的? 3.教材第4页“练习一”第4题。
(1)第4题是根据第一列的积,写出其他各列的积。
(2)本题利用表格的形式,让学生在按从左到右的顺序逐列写出积的过程中,自觉地应用积的变化规律,并打通小数乘法与整数乘法之间的联系,体会到小数乘法与整数乘法的相同点和不同点。
通过今天的学习,你有了哪些新的收获?
质疑问难:通过今天的学习,你有哪些疑问吗?
教学时依托现实情境,让学生利用已有的知识经验,用自己理解的方法自主地解决问题。教师在充分肯定学生的其他合理方法之后,着重分析和评价化“元”为“角”的算法,让学生体会小数乘法和整数乘法的联系,了解小数乘整数可以转化成整数乘整数进行计算。同时,让学生初步感悟小数乘整数的
算理和算法,培养学生的数学思维能力。第2课时 小数乘小数
教材第5~6页的内容。
1.使学生理解小数乘小数的算理,掌握计算方法。 2.使学生经历探索与归纳小数乘小数计算方法的过程。
重点:小数乘小数的计算方法。 难点:小数乘法的算理。
课件。
师:同学们,最近我们要给学校的宣传栏刷油漆,你能帮忙算算需要多少千克油漆吗?(课件出示教材第5页例3主题图。)
师:在计算需要多少千克油漆之前,需要先算出什么呢?
板书(或课件演示):2.4×0.8=________
师:同学们,请观察这个乘法算式,它与我们上节课学习的小数乘法有什么不同?(两个因数都是小数。)
师:我们上节课学习的小数乘整数是怎样计算的?那两个因数都是小数又该怎么计算呢?这就是我们今天要学习的内容。(板书课题:小数乘小数。)
1.教学例3。
(1)师:小数乘整数是把小数转化成整数进行计算的,现在能否还用这个方法来计算2.4×0.8呢?如果能,应该怎样做?
指名学生口答,教师适时板书(或课件演示)学生的思考结果。
× ×10
1. 2. 0. 9. 4 8 2 ――→ ――→ ――→
× 1 2 9 4 8 2 ×10
÷100
(2)师:计算出了宣传栏的面积后,怎样计算需要多少千克油漆呢? 板书(或课件演示):1.92×0.9=________
师:这道题也可以先按整数乘法计算吗?积中的小数点应该点在哪里呢? 学生独立完成,教师评讲。
(3)练习:学生独立完成教材第5页的“做一做”。
师:观察例3及“做一做”的各题中因数与积的小数位数,你能发现什么? (4)组织学生回顾、讨论小数乘法是怎样计算的,然后学生汇报自己的想法。 师:你是怎样计算的?(先按整数乘法算出积,再点小数点。)
师:怎样确定积的小数点的位置?(点小数点时,先看因数中一共有几位小数,就从积的最右边起数出几位,再点上小数点。)
2.教学例4。
(1)师:同学们,我们刚刚总结了小数乘法的计算方法,你能运用小数乘法的计算方法来计算下面这道题吗?
板书(或课件演示):0.56×0.04=________
学生尝试计算,教师巡视,了解学生的计算情况和遇到的问题。 (2)师:在计算时,你遇到了什么新问题吗?
师:乘得的积的小数位数不够时,怎样点小数点呢?
(3)练习:学生独立完成教材第6页“做一做”第1题。
(其中既有一般的小数乘法,也有积的小数末尾有0和积的小数位数不够的类型,帮助学生全面掌握小数乘法的计算。)
3.探究积与因数的大小关系。
师:同学们,请大家独立完成教材第6页“做一做”第2题,并分别将每组题中计算的结果和第一个因数比较大小,发现其中的规律。
学生交流、总结自己发现的规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
1.教材第8页“练习二”第1题(基本计算)。
(1)学生独立练习。
(2)组织学生交流和订正。
2.教材第8页“练习二”第2题(基本应用)。
(1)帮助学生理解题意,指导学生看懂每种商品各有多少千克。 (2)引导学生回顾单价、数量和总价之间的关系。 (3)学生独立完成。 3.拓展练习。
在下面算式的括号里填上合适的数。(你能想出不同的填法吗?) 0.48=( )×( )=( )×( )
说说这节课你有什么收获。
本节课紧紧抓住积的变化规律来引导学生理解积的小数点位置的确定方法,放弃大量训练的教学方式,努力使设计从更高的层次上触动学生的思维,关注学生思维的有效发展。教学中还特别关注了学生之间的交流,在课堂上给学生提供宽松、和谐的交流平台,使学生能够积极地参与到课堂教学中来,在畅所欲言中获得成功的体验。
第3课时 倍数是小数的实际问题
教材第7页的内容。
1.使学生经历在实际问题中收集和获取信息的过程,会正确解决倍数是小数的实际问题。 2.掌握小数乘法的验算方法,体验解决问题方法的多样性,养成严谨求实的科学态度。