第一讲 逻辑推理(二)
例11 一次数学考试,共六道判断题.考生认为正确的就画“√”,认为错误的就画“×”.记分的方法是:答对一题给2分;不答的给1分;答错的不给分.已知A、B、C、D、E、F、G七人的答案及前六个人的得分记录在表中,请在表中填出G的得分,并简单说明你的思路。
例12 李英、赵林、王红三人参加全国小学生数学竞赛,他们是来自金城、沙市、水乡的选手,并分别获得一、二、三等奖.现在知道:
例13 李云和他哥哥参加一次集会,同时出席的还有其他两对兄弟.见面后有的人握手问候,没有人和自己的兄弟问候,也没有人和同一个人握两次手.事后李云发现除自己外每个人握手次数互不相同,问李云握了几次手?李云的哥哥握了几次手?
例14 红、黄、蓝、白、紫五种颜色的珠子各一颗,分别用纸包着,在桌子上排成一行,有A、B、C、D、E五个人,猜各包珠子的颜色,每人只猜两包。
例15 有A、B、C三个足球队,每两队都比赛一场,比赛结果是:A有一场踢平,共进球2个,失球8个;B两战两胜,共失球2个;C共进球4个,失球5个,请你写出每队比赛的比分。
例16 北京至福州列车里坐着6位旅客:A、B、C、D、E、F.分别来自北京、天津、上海、扬州、南京和杭州,已知
①A和北京人是医生;E和天津人是教师;C和上海人是工程师。 ②A、B、F和扬州人参过军,而上海人从未参军。 ③南京人比A岁数大;杭州人比B岁数大;F最年轻。 ④B和北京人一起去扬州;C和南京人一起去广州。
例17 甲、乙、丙三人分别在北京、天津、上海的中学教数学、物理、化学.已知
①甲不在北京; ②乙不在天津; ③在北京的人不教化学; ④在天津的人教数学; ⑤乙不教物理。
根据以上情况判断,甲、乙、丙三人分别在何处教何课程?
第二讲 旋转体的计算
例1 甲、乙两个圆柱形水桶,容积一样大,甲桶底圆半径是乙桶的1.5倍,乙桶比甲桶高25厘米,求甲、乙两桶的高度.
例2 一块正方形薄铁板的边长是22厘米,以它的一个顶点为圆心,边长为半径画弧,沿弧剪下一个扇形,用这块扇形铁板围成一个圆锥筒,求它的容积(结果取整数部分).
2米,
圆锥的高为1米,这堆谷重约多少公斤(谷的比重是每立方米重720公斤,结果取整数部分)?
例4 有一个倒圆锥形的容器,它的底面半径是5厘米,高是10厘米,
再把石子全部拿出来,求此时容
器内水面的高度.
例5 有一草垛,如下图,上部是圆锥形,下部是圆台形,圆锥的高为0.7米,底面圆周长为6.28米,圆台的高为1.5米,下底面周长为
4.71米.如果每立方米草约重150公斤,求这垛草的重量(结果取整数部分).
例6 如下右图,在长为35厘米的圆筒形管子的横截面上,最长直线段为20厘米,求这个管子的体积.
例7 一个长方形的长为16厘米,宽为12厘米.以它的一条对角线为轴旋转此长方体,得到一个旋转体.求这个旋转体的体积.(结果中保留π,即不用近似值代替π.)