欧阳总创编 2021..02.13
六方最密堆积中正八面体
空隙
时间:2021.02.13 创作:欧阳总
和正四面体空隙中心的分数坐标
等径圆球紧密排列形成密置层,如图所示。
在密置层内,每个圆球周围有六个球与它相切。相切的每三个球又围
出一个三角形空隙。仔细观察这些三角形空隙,一排尖向上,接着下面一排尖向下,交替排列。
欧阳总创编 2021..02.13
欧阳总创编 2021..02.13
而每个圆球与它周围的六个球围出的六个三角形空隙中,有三个尖向上,另外三个尖向下。如图所示,我们在这里将尖向上的三角形空隙记为
B,尖向下的三角形空隙记为C。第二密置层的球放在B之上,第三密置层的球投影在C中,三层完成一个周期。这样的最密堆积方式叫做立方最密堆积(ccp,记为 A1型),形成面心立方晶胞。
若第三密置层的球投影与第一密置层的球重合,两层完成一个周期。这样的最密堆积方式叫做六方最密堆积(hcp,记为A3型),形成六方晶胞,如图所示。
在这两种堆积方式中,任何四个相切的球围成一个正四面体空隙;另外,相切的三个球如果与另一密置层相切的三个球空隙对应,它们六个球将围成一个正八面体空隙。也就是说,围成正八面体空隙的这六个球可以分为相邻的两层,每层的正三
欧阳总创编 2021..02.13
欧阳总创编 2021..02.13
角形中心的连线垂直于正三角形所在的密置层,参看下图,黑色代表的不是球而是正八面体的中心。
在这两种最密堆积方式中,每个球与同一密置层的六个球相切,同时与上一层的三个球和下一层的三个球相切,即每个球与周围十二个球相切(配位数为12)。中心这个球与周围的球围出八个正四面体空隙,平均分摊到每个正四面体空隙的是八分之一个球。这样,每个正四面体空隙分摊到的球数是四个八分之一,即半个。中心这个球周围还围出六个八面体空隙,它平均分摊到每个正八面体空隙的是六分之一个球。这样,每个正八面体空隙分摊到的球数是六个六分之一,即一个。总之,这两种最密堆积中,球数 : 正八面体空隙数 : 正四面体空隙数 = 1:1:2 。
面心立方最密堆积(ccp, A1型)中正八面体空隙和正四面体空隙的问题比较简单、直观。下面我们集中讨论六方最密堆积(hcp,A3型)中正八面体空隙和正四面体空隙中心的分数坐标。
在六方最密堆积中画出一个六方晶胞,如下面两幅图所示。
平均每个六方晶胞中有两个正八面体空隙,如下面两幅图所示。空隙中心的分数坐标分别为:(2/3,1/3,1/4),(2/3,1/3,3/4)。
欧阳总创编 2021..02.13