经济数学基础形成性考核册及参考答案
作业(一)
(一)填空题 1.limx?sinxxx?0?__________x?0x?0_________.答案:0
?x2?1,2.设f(x)???k,?,在x?0处连续,则k?________12.答案:1
123.曲线y?x在(1,1)的切线方程是 .答案:y?x?
4.设函数f(x?1)?x2?2x?5,则f?(x)?____________.答案:2x 5.设f(x)?xsinx,则f??()?__________2π.答案:?π2
(二)单项选择题 1. 函数y?x?1x?x?22的连续区间是( )答案:D
A.(??,1)?(1,??) B.(??,?2)?(?2,??)
C.(??,?2)?(?2,1)?(1,??) D.(??,?2)?(?2,??)或(??,1)?(1,??) 2. 下列极限计算正确的是( )答案:B A.limxx?1 B.lim?x?0xxx?0?1
C.limxsinx?01x?1 D.limsinxxx???1
3. 设y?lg2x,则dy?( ).答案:B A.
12xdx B.
1xln10dx C.
ln10xdx D.
1xdx
4. 若函数f (x)在点x0处可导,则( )是错误的.答案:B
A.函数f (x)在点x0处有定义 B.limf(x)?A,但A?f(x0)
x?x0 C.函数f (x)在点x0处连续 D.函数f (x)在点x0处可微 5.当x?0时,下列变量是无穷小量的是( ). 答案:C A.2 B.(三)解答题 1.计算极限 (1)limxsinxx C.ln(1?x) D.cosx
x?3x?2x?122x?1? lim(x?2)(x?1)(x?1)(x?1)x?1 = limx?2(x?1)x?1 = ?12
1
(2)limx?5x?6x?6x?822x?2=lim(x?2)(x?3)(x?2)(x?4)x?2 = limx?3(x?4)
x?2 =
12
(3)lim1?x?1xx?0=lim(1?x?1)(1?x?1)x(1?x?1)?xx(1?x?1)=limx?0 =lim?1(1?x?1)x?0x?0??12
(4)limx?3x?53x?2x?4221??limx??3x2x??3552x?1 43x??3?x2(5)limsin3xsin5x2x?0?lim5xsin3x33xsin5x5x?0=
(6)limx?4sin(x?2)x?2?lim(x?2)(x?2)sin(x?2)x?2?4
1?xsin?b,?x?2.设函数f(x)??a,sinx??x?x?0x?0, x?0问:(1)当a,b为何值时,f(x)在x?0处有极限存在? (2)当a,b为何值时,f(x)在x?0处连续.
答案:(1)当b?1,a任意时,f(x)在x?0处有极限存在; (2)当a?b?1时,f(x)在x?0处连续。 3.计算下列函数的导数或微分: (1)y?x?2?logx2x2x?2,求y? 1xln22答案:y??2x?2ln2?(2)y?ax?bcx?d
,求y?
答案:y?=
a(cx?d)?c(ax?b)(cx?d)2?ad?cb(cx?d)2
2
(3)y?1,求y?
3x?511答案:y?23x?5=(3x?5)? y???32(3x?5)3
(4)y?x?xex,求y?
答案:y??12x?(x?1)ex
(5)y?eaxsinbx,求dy
答案:y??(eax)?sinbx?eax(sinbx)?
?aeaxsinbx?eaxcosbx?b
?eax(asinbx?bcosbx) dy?eax(asinbx?bcosbx)dx
1(6)y?ex?xx,求dy 答案:dy?(311xx2x?x2e)d
(7)y?cosx?e?x2,求dy
答案:dy?(2xe?x2?sinx2x)dx
(8)y?sinnx?sinnx,求y?
答案:y?=nsinn?1xcosx+cosnxn=n(sinn?1xcosx?cosnx)
(9)y?ln(x?1?x2),求y? 答
案1y??1(x?1?x2)??11?12x?1?x2x?1?x2(2(1?x2)?2x)?1
1?x23(10)y?2cot1x?1?x2?2xx,求y?
3
:
?1(1?xx?1?x21?x2)答案:y??2cot1xln21x?12x?32?16x?56
xsin24.下列各方程中y是x的隐函数,试求y?或dy (1)x2?y2?xy?3x?1,求dy
答案:解:方程两边关于X求导:2x?2yy??y?xy??3?0
(2y?x)y??y?2x?3 , dy?y?3?2x2y?xdx
(2)sin(x?y)?exy?4x,求y?
xy答案:解:方程两边关于X求导cos(x?y)(1?y?)?e(y?xy?)?4
(cos(x?y)?ex)y??4?yey??4?yexexyxyxyxy?cos(x?y)
?cos(x?y)?cos(x?y)
5.求下列函数的二阶导数: (1)y?ln(1?x),求y??
2?2x2222答案:y???(1?x)
(2)y?1?xx34,求y??及y??(1)
答案:y???x?52?14x?32,y??(1)?1
作业(二)
(一)填空题
1.若?f(x)dx?2?2x?c,则f(x)?___________________2.
x.答案:2ln2?2
x?(sinx)?dx?________.答案:sinx?c
23. 若?f(x)dx?F(x)?c,则?xf(1?x)dx? .答案:?4.设函数
12F(1?x)?c
2?dxde1ln(1?x)dx?__________2_.答案:0
4
5. 若P(x)??0x11?t2dt,则P?(x)?__________.答案:?11?x2
(二)单项选择题
2
1. 下列函数中,( )是xsinx的原函数. A.
12cosx2 B.2cosx2 C.-2cosx2 D.-
12cosx2
答案:D
2. 下列等式成立的是( ). A.sinxdx?d(cosx) B.lnxdx?d(x1x)
C.2dx?1ln2d(2)
x D.
1xdx?dx
答案:C
3. 下列不定积分中,常用分部积分法计算的是( ).
2A.?cos(2x?1)dx, B.?x1?xdx C.?xsin2xdx D.?x1?x2dx
答案:C
4. 下列定积分计算正确的是( ). A.?2xdx?2 B.??1116?1dx?15
?C.????(x?x)dx?0 D.?sinxdx?0
??23答案:D
5. 下列无穷积分中收敛的是( ).
A.???11xdx B.???11x2dx C.???0edx D.?x??1sinxdx
答案:B (三)解答题
1.计算下列不定积分 (1)?3exxdx
3xx答案:?3exxdx=?(3e)dx=
xeln3e?c
(2)?(1?x)x2dx
答案:?
(1?x)x2dx=?(1?2x?x)x2dx=?(x?1213?2x2?x2)dx
5