好文档 - 专业文书写作范文服务资料分享网站

高中物理问题详解常见弹簧类问题分析

天下 分享 时间: 加入收藏 我要投稿 点赞

常见弹簧类问题分析

高考要求 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点

1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.

2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.

3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定

义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:Wk=-(

1212

kx2-kx1),弹力的功等于弹性势能增量的负值.弹性势能的公式22Ep=

12

kx,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,2下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析。

一般以能量的转化与守恒的角度来求解.

一、与物体平衡相关的弹簧问题

1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )

A.m1g/k1 B.m2g/k2 C.m1g/k2 D.m2g/k2

此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过

弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而ml刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g/k2=mlg/k2.

此题若求ml移动的距离又当如何求解?

参考答案:C

2.S1和S2表示劲度系数分别为k1,和k2两根轻质弹簧,k1>k2;A和B表示质量分别为mA和mB的两个小物块,mA>mB,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使( ). A.S1在上,A在上 B.S1在上,B在上 C.S2在上,A在上 D.S2在上,B在上

参考答案:D

3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m,它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k1(大弹簧)和k2(小弹簧)分别为多少?

(参考答案k1=100N/m k2=200N/m)

4.(2001年上海高考)如图所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.现将L2线剪断,求剪断瞬时物体的加速度.

(1)下面是某同学对该题的一种解法:

解 设L1线上拉力为Tl,L2线上拉力为T2,重力为mg,物体在三力作用下保持平衡

Tlcosθ=mg,Tlsinθ=T2,T2=mgtanθ,

剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.

因为mgtanθ=ma,所以加速度a=g tanθ,方向在T2反方向.你认为这个结果正确吗?清对该解法作出评价并说明理由.

解答:错.因为L2被剪断的瞬间,L1上的张力大小发生了变化.此瞬间 T2=mgcosθ, a=gsinθ

(2)若将图中的细线Ll改为长度相同、质量不计的轻弹簧,其他条件不变,求解的步骤和结果与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.

解答:对,因为L2被剪断的瞬间,弹簧L1的长度未及发生变化,T1大小和方向都不变.

二、与动力学相关的弹簧问题

5.如图所示,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为M的木板,木板下面再挂一个质量为m的物体.当剪掉m后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长,(不考虑剪断后m、M间的相互作用)则M与m之间的关系必定为 ( )

A.M>m B.M=m C.M

参考答案:B

6.如图所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则

在弹射过程中(重物与弹簧脱离之前)重物的运动情况是 ( ) 参考答案:C

A.一直加速运动 B.匀加速运动

C.先加速运动后减速运动 D.先减速运动后加速运动

[解析] 物体的运动状态的改变取决于所受合外力.所以,对物体进行准确的受力分析是解决此题的关键,物体在整个运动过程中受到重力和弹簧弹力的作用.刚放手时,弹力大于重力,合力向上,物体向上加速运动,但随着物体上移,弹簧形变量变小,弹力随之变小,合力减小,加速度减小;当弹力减至与重力相等的瞬间,合力为零,加速度为零,此时物体的速度最大;此后,弹力继续减小,物体受到的合力向下,物体做减速运动,

当弹簧恢复原长时,二者分离.

7.如图所示,一轻质弹簧竖直放在水平地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么

在小球压缩弹簧的过程中,以下说法中正确的是( ) 参考答案:C

A.小球加速度方向始终向上 B.小球加速度方向始终向下 C.小球加速度方向先向下后向上 D.小球加速度方向先向上后向下

(试分析小球在最低点的加速度与重力加速度的大小关系)

8.如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点.今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是 ( )

A.物体从A到B速度越来越大,从B到C 速度越来越小

B.物体从A到B速度越来越小,从B到C 加速度不变

C.物体从A到B先加速后减速,从B一直减速运动 D.物体在B点受到的合外力为零

参考答案:C

9.如图所示,一轻质弹簧一端与墙相连,另一端与一物体接触,当弹簧在O点位置时弹簧没有形变,现用力将物体压缩至A点,然后放手。物体向右运动至C点而静止,AC距离为L。第二次将物体与弹簧相连,仍将它压缩至A点,则第二次物体在停止运动前经过的总路程s可能为:

A.s=L B.s>L

C.s

参考答案:AC

(建议从能量的角度、物块运动的情况考虑)

10. A、B两木块叠放在竖直轻弹簧上,如图所示,已知木块A、B质量分别为0.42 kg和0.40 kg,弹簧的劲度系数k=100 N/m ,若在木块A上作用一个竖直向上的力F,使A由静止开始以0.5 m/s的加速度竖直向上做匀加速运动(g=10 m/s).

(1)使木块A竖直做匀加速运动的过程中,力F的最大值; (2)若木块由静止开始做匀加速运动,直到A、B分离的过

程中,弹簧的弹性势能减少了0.248 J,求这一过程F对 木块做的功.

分析:此题难点和失分点在于能否通过对此物理过程的分析后,确定两物体分离的临界点,即当弹簧作用下的两物体加速度、速度相同且相互作用的弹力 N =0时 ,恰好分离.

解:

当F=0(即不加竖直向上F力时),设A、B叠放在弹簧上处于平衡时弹簧的压缩量为x,有

2

2

kx=(mA+mB)g

x=(mA+mB)g/k ①

对A施加F力,分析A、B受力如图

对A F+N-mAg=mAa ② 对B kx′-N-mBg=mBa′ ③

可知,当N≠0时,AB有共同加速度a=a′,由②式知欲使A匀加速运动,随N减小

F增大.当N=0时,F取得了最大值Fm,

即Fm=mA(g+a)=4.41 N

又当N=0时,A、B开始分离,由③式知, 此时,弹簧压缩量kx′=mB(a+g)

x′=mB(a+g)/k ④ AB共同速度 v2=2a(x-x′) ⑤

由题知,此过程弹性势能减少了WP=EP=0.248 J 设F力功WF,对这一过程应用动能定理或功能原理

1WF+EP-(mA+mB)g(x-x′)=(mA+mB)v2

2联立①④⑤⑥,且注意到EP=0.248 J 可知,WF=9.64×10 J

-2

高中物理问题详解常见弹簧类问题分析

常见弹簧类问题分析高考要求轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视.弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变
推荐度:
点击下载文档文档为doc格式
8cbva9uc6q28mwx1483k6i8ss1c8ox01bh2
领取福利

微信扫码领取福利

微信扫码分享