【好题】高中必修五数学上期中第一次模拟试题(附答案)(4)
一、选择题
n21.数列?an?的前n项和为Sn?n?n?1,bn???1?an?n?N*?,则数列?bn?的前50项
和为( ) A.49
B.50
C.99
D.100
0?y…?2x?y?2?2.若不等式组?表示的平面区域是一个三角形,则实数a的取值范围是( )
x?y…0???x?y?a?4?A.?,???
?3?C.?1,? 3B.?0,1?
D.?0,1?U?,???
?4????4?3??3.已知数列?an?的首项a1?1,数列?bn?为等比数列,且bn?an?1.若b10b11?2,则anD.212
a21?( )
A.29
B.210
C.211
4.已知等比数列{an}的各项均为正数,且a5a6?a4a7?18,则
log3a1?log3a2?log3a3?????log3a10?( )
A.10
B.12
C.1?log35
D.2?log35
5.已知等差数列{an}的前n项和为Sn,a1?9,A.4 6.B.5
S9S5???4,则Sn取最大值时的n为 95C.6 D.4或5
?3?a??a?6???6?a?3?的最大值为( )
B.
A.9
9 2C.3 D.
32 27.已知A、B两地的距离为10 km,B、C两地的距离为20 km,现测得∠ABC=120°,则A、C两地的距离为 ( ) A.10 km
B.3 km
C.105 km
D.107 km
8.已知等比数列{an}中,a3a11?4a7,数列{bn}是等差数列,且b7?a7,则b5?b9?( ) A.2
B.4
C.16
D.8
9.已知?ABC中,A,B,C的对边分别是a,b,c,且b?3,c?33,
B?30?,则AB边上的中线的长为( )
A.37 2337 或
22B.
3 4337或 42C.D.
10.若不等式m?A.9
12?在x??0,1?时恒成立,则实数m的最大值为( ) 2x1?xB.
9 2C.5 D.
5 211.在等差数列?an?中,如果a1?a2?40,a3?a4?60,那么a7?a8?( ) A.95
B.100
C.135
D.80
12.设{an}是首项为a1,公差为-2的等差数列,Sn为其前n项和,若S1,S2,S4成等比数列,则a1? ( ) A.8
B.-8
nC.1 D.-1
二、填空题
13.若数列?an?满足a1?1,??1??an?an?1??3?2n?1 ?n?N*?,数列?bn?的通项公式
bn??2n?1??2n?1?1?an?1 ,则数列?bn?的前10项和S10?___________
14.在VABC中,角A,B,C的对边分别为a,b,c,btanB?btanA??2ctanB,且
a?8,b?c?73,则VABC的面积为______.
?x?y?2,?15.已知实数x,y满足?x?y?2,则z?2x?y的最大值是____.
?0?y?3,?16.已知数列
的前项和
,则
_______.
17.已知数列?an?的前n项和为Sn,a1?1,且Sn??an?1(?为常数).若数列?bn?2满足anbn??n?9n?20,且bn?1?bn,则满足条件的n的取值集合为________.
18.已知对满足4x?4y?5?4xy的任意正实数x,y,都有
x2?2xy?y2?ax?ay?1?0,则实数a的取值范围为______.
19.正项等比数列?an?满足a4?a2?18,a6?a2?90,则?an?前5项和为________.
?y?x?20.设变量x,y满足约束条件:?x?y?2,则z?x?3y的最小值为__________.
?x??1?三、解答题
21.在VABC中,cosA??53,cosB?. 135(1)求sinC的值;
(2)设BC?5,求VABC的面积.
(n?N*),等差数列?bn?满足22.若数列?an?的前n项和Sn满足2Sn?3an?1?b1?3a1,b3?S2?3.
(1)求数列?an?、?bn?的通项公式; (2)设cn?bn,求数列?cn?的前n项和为Tn. 3an23.在?ABC 中,内角A,B,C的对边分别为a,b,c .已知(1) 求
cosA?2cosC2c?a ?cosBbsinC的值 sinA1,b?2 ,求?ABC的面积. 4(2) 若cosB?24.已知数列?an?是递增的等比数列,且a1?a4?9,a2a3?8. (Ⅰ)求数列?an?的通项公式; (Ⅱ)设Sn为数列?an?的前n项和,bn?an?1,求数列?bn?的前n项和Tn. SnSn?125.设等差数列?an?满足a3?5,a10??9 (Ⅰ)求?an?的通项公式;
(Ⅱ)求?an?的前n项和Sn及使得Sn最大的序号n的值
26.若Sn是公差不为0的等差数列?an?的前n项和,且S1,S2,S4成等比数列,S2?4. (1)求数列?an?的通项公式;
3,Tn是数列?bn?的前n项和,求使得Tn?m对所有n?N?都成立的anan?120最小正整数m.
(2)设bn?
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.A 解析:A 【解析】
试题分析:当n?1时,a1?S1?3;当n?2时,
2an?Sn?Sn?1?n2?n?1???n?1???n?1??1??2n,把n?1代入上式可得
????3,n?1a1?2?3.综上可得an?{.所以bn?{?2n,n为奇数且n?1.数列?bn?的前50项
2n,n?22n,n为偶数和为
?3,n?1S50??3?2?3?5?7?L?49??2?2?4?6?L?50???3?2?24?3?49?2?2?25?2?50?2?49.故A正确.
考点:1求数列的通项公式;2数列求和问题.
2.D
解析:D 【解析】 【分析】
0?y…?2x?y?2?要确定不等式组?表示的平面区域是否一个三角形,我们可以先画出
x?y…0???x?y?a0?y…??2x?y?2,再对a值进行分类讨论,找出满足条件的实数a的取值范围. ?x?y…0?【详解】
0?y…?不等式组?2x?y?2表示的平面区域如图中阴影部分所示.
?x?y…0?
?x?y?22?由?得A?,?,
?33??2x?y?2?y?0,?. 由?得B?10?2x?y?20?y…?2x?y?2?若原不等式组?表示的平面区域是一个三角形,则直线x?y?a中a的取值范
0?x?y…??x?y?a围是a??0,1?U?,??? 故选:D 【点睛】
平面区域的形状问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合分类讨论的思想,针对图象分析满足条件的参数的取值范围.
?4?3??3.B
解析:B 【解析】 【分析】
由已知条件推导出an=b1b2…bn-1,由此利用b10b11=2,根据等比数列的性质能求出a21. 【详解】
数列{an}的首项a1=1,数列{bn}为等比数列,且bn?∴b1=an?1, anaa2a?a2,b2=3,?a3?b1b2,b3=4,?a4?b1b2b3, a1a2a3Qb10b11?2,?a21?b1b2?b20?(b1b20)?(b2b19)???(b10b11)?210 . …an?b1b2?bn?1,故选B. 【点睛】
本题考查数列的第21项的求法,是中档题,解题时要认真审题,注意递公式和等比数列的性质的合理运用.
4.A
解析:A 【解析】 【分析】
利用对数运算合并,再利用等比数列?an?的性质求解。 【详解】
因为log3a1?log3a2?log3a3Llog3a10=log3?a1a2a3La10?=log3?a1a10?,
5又a4?a7?a5?a6?a1?a10,由a4?a7?a5?a6?18得a1?a10?9,所以
log3a1?log3a2?log3a3Llog3a10=log395=10,故选A。
【点睛】
本题考查了对数运算及利用等比数列?an?的性质,利用等比数列的性质:当