好文档 - 专业文书写作范文服务资料分享网站

高考数学一轮复习课时跟踪检测(二)命题及其关系、充分条件与必要条件理(普通高中)

天下 分享 时间: 加入收藏 我要投稿 点赞

课时跟踪检测(二) 命题及其关系、充分条件与必要条件

(一)普通高中适用作业

A级——基础小题练熟练快

1.命题“若一个数是负数,则它的平方是正数”的逆命题是( )

A.“若一个数是负数,则它的平方不是正数” B.“若一个数的平方是正数,则它是负数” C.“若一个数不是负数,则它的平方不是正数” D.“若一个数的平方不是正数,则它不是负数”

解析:选B 依题意得,原命题的逆命题是“若一个数的平方是正数,则它是负

数”.

2.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”

的( )

B.必要不充分条件 D.既不充分也不必要条件

A.充分不必要条件

C.充要条件

解析:选A 当四边形ABCD为菱形时,必有对角线互相垂直,即AC⊥BD;当四边形

ABCD中AC⊥BD时,四边形ABCD不一定是菱形,还需要AC与BD互相平分.综上知,“四

边形ABCD为菱形”是“AC⊥BD”的充分不必要条件.

3.命题“若x+3x-4=0,则x=4”的逆否命题及其真假性为( )

A.“若x=4,则x+3x-4=0”为真命题 B.“若x≠4,则x+3x-4≠0”为真命题 C.“若x≠4,则x+3x-4≠0”为假命题 D.“若x=4,则x+3x-4=0”为假命题

解析:选C 根据逆否命题的定义可以排除A、D,因为x+3x-4=0,所以x=-4或

1,故原命题为假命题,即逆否命题为假命题.

4.设U为全集,A,B是集合,则“存在集合C,使得A?C,B??UC”是“A∩B=?”

的( )

B.必要不充分条件 D.既不充分也不必要条件

A.充分不必要条件

C.充要条件

2

2222

2

解析:选C 依题意,若A?C,则?U C??UA,若B??UC,可得A∩B=?;若A∩B=?,

不妨令C=A,显然满足A?C,B??UC,故满足条件的集合C是存在的.

5.命题p:“若x<1,则x<1”的逆命题为q,则p与q的真假性为( )

B.p真q假 D.p假q假

A.p真q真 C.p假q真

解析:选B q:若x<1,则x<1.

2

2

1 / 5

∵p:x<1,则-1

当x<1时,x<1不一定成立,∴q假,故选B.

6.(2017·浙江高考)已知等差数列{an}的公差为d,前n项和为Sn,则“d>0”是“S4

+S6>2S5”的( )

B.必要不充分条件 D.既不充分也不必要条件

A.充分不必要条件 C.充分必要条件

2

2

解析:选C 因为{an}为等差数列,所以S4+S6=4a1+6d+6a1+15d=10a1+21d,2S5=

10a1+20d,S4+S6-2S5=d,所以d>0?S4+S6>2S5.

7.在△ABC中,“A=B”是“tan A=tan B”的________条件.

解析:由A=B,得tan A=tan B,反之,若tan A=tan B,则A=B+kπ,k∈Z.∵0

<A<π,0

答案:充要

8.已知p(x):x+2x-m>0,若p(1)是假命题,p(2)是真命题,则实数m的取值范围

为________.

解析:因为p(1)是假命题,所以1+2-m≤0,解得m≥3.

又p(2)是真命题,所以4+4-m>0,解得m<8.

故实数m的取值范围是[3,8).

答案:[3,8) 9.下列命题:

①“a>b”是“a>b”的必要条件; ②“|a|>|b|”是“a>b”的充要条件; ③“a>b”是“a+c>b+c”的充要条件.

其中真命题的是________(填序号).

解析:①a>b2

22

2

2

a2>b2,且a2>b2 a>b,故①不正确;

②a>b?|a|>|b|,故②正确;

2

2

③a>b?a+c>b+c,且a+c>b+c?a>b,故③正确.

答案:②③

10.(2024·德州模拟)下列命题中为真命题的序号是________.

1

①若x≠0,则x+≥2;

x

②命题:若x=1,则x=1或x=-1的逆否命题为:若x≠1且x≠-1,则x≠1;

③“a=1”是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件;

④命题“若x<-1,则x-2x-3>0”的否命题为“若x≥-1,则x-2x-3≤0”.1

解析:当x<0时,x+≤-2,故①错误;根据逆否命题的定义可知,②正确;“a=

x

2

2

2

2

2 / 5

±1”是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件,故③错误;根据否命题

的定义知④正确.故填②④.

答案:②④

B级——中档题目练通抓牢

1.(2024·河南开封二十五中月考)下列命题中为真命题的是( )

A.命题“若x>1,则x>1”的否命题 B.命题“若x>y,则x>|y|”的逆命题 C.命题“若x=1,则x+x-2=0”的否命题

1

D.命题“若>1,则x>1”的逆否命题

x

解析:选B 对于A,命题“若x>1,则x>1”的否命题为“若x≤1,则x≤1”,易知当x=-2时,x=4>1,故为假命题;对于B,命题“若x>y,则x>|y|”的逆命题为“若x>|y|,则x>y”,分析可知为真命题;对于C,命题“若x=1,则x+x-2=0”的否命题为“若x≠1,则x+x-2≠0”,易知当x=-2时,x+x-2=0,故为假命11

题;对于D,命题“若>1,则x>1”的逆否命题为“若x≤1,则≤1”,易知为假命

xx

题,故选B.

2.如果x,y是实数,那么“x≠y”是“cos x≠cos y”的( )

B.充分不必要条件 D.既不充分也不必要条件

A.充要条件 C.必要不充分条件

2

2

2

2

2

2

2

2

解析:选C 设集合A={(x,y)|x≠y},B={(x,y)|cos x≠cos y},则A的补集C={(x,y)|x=y},B的补集D={(x,y)|cos x=cos y},显然CD,所以BA.于是

“x≠y”是“cos x≠cos y”的必要不充分条件.

3.若x>5是x>a的充分条件,则实数a的取值范围为( )

B.[5,+∞) D.(-∞,5]

A.(5,+∞) C.(-∞,5)

解析:选D 由x>5是x>a的充分条件知,{x|x>5}?{x|x>a},∴a≤5,故选D.4.在命题“若m>-n,则m>n”的逆命题、否命题、逆否命题中,假命题的个数是

________.

解析:若m=2,n=3,则2>-3,但2<3,所以原命题为假命题,则逆否命题也为假命题,若m=-3,n=-2,则(-3)>(-2),但-3<2,所以逆命题是假命题,则否命题

也是假命题.故假命题的个数为3.

答案:3

5.(2024·武汉调研)已知“命题p:(x-m)>3(x-m)”是“命题q:x+3x-4<0”

成立的必要不充分条件,则实数m的取值范围为________________.

2

2

2

2

2

2

2

2

3 / 5

解析:命题p:x>m+3或x<m,

命题q:-4<x<1.

因为p是q成立的必要不充分条件,

所以m+3≤-4或m≥1,

故m≤-7或m≥1.

答案:(-∞,-7]∪[1,+∞)

6.写出命题“已知a,b∈R,若关于x的不等式x+ax+b≤0有非空解集,则

a≥4b”的逆命题、否命题、逆否命题,并判断它们的真假.

解:(1)逆命题:已知a,b∈R,若a≥4b,则关于x的不等式x+ax+b≤0有非空解

集,为真命题.

(2)否命题:已知a,b∈R,若关于x的不等式x+ax+b≤0没有非空解集,则

a<4b,为真命题.

(3)逆否命题:已知a,b∈R,若a<4b,则关于x的不等式x+ax+b≤0没有非空解

集,为真命题.

7.已知集合A={x|x-6x+8<0},B={x|(x-a)(x-3a)<0}.

(1)若x∈A是x∈B的充分条件,求a的取值范围;

(2)若A∩B=?,求a的取值范围. 解:A={x|x-6x+8<0}={x|2

B={x|(x-a)(x-3a)<0}.

(1)由题意知A?B,当a=0时,B=?,不合题意.

当a>0时,B={x|a

??a≤2, 则?

?3a≥4,?

2

2

2

2

2

2

2

2

2

2

4

解得≤a≤2.

3

当a<0时,B={x|3a

?3a≤2, 则?

?a≥4,

无解.

?4? 综上,a的取值范围为?,2?.?3?

(2)要满足A∩B=?, 当a>0时,B={x|a

2

则a≥4或3a≤2,即0

3

当a<0时,B={x|3a

4 / 5

4

则a≤2或a≥,即a<0.

3 当a=0时,B=?,A∩B=?.

2?? 综上,a的取值范围为?-∞,?∪[4,+∞).3??

C级——重难题目自主选做

1

1.“a=0”是“函数f(x)=sin x-+a为奇函数”的( )

x

B.必要不充分条件 D.既不充分也不必要条件

A.充分不必要条件

C.充要条件

解析:选C f(x)的定义域为{x|x≠0},关于原点对称,当a=0时,f(x)=sin x-1?111? ,f(-x)=sin(-x)-=-sin x+=-?sin x-?=-f(x),故f(x)为奇函数;x?x-xx?1

反之,当f(x)=sin x-+a为奇函数时,f(-x)+f(x)=0,又f(-x)+f(x)=

xsin(-x)-

111+a+sin x-+a=2a,故a=0,所以“a=0”是“函数f(x)=sin x--xxx

+a为奇函数”的充要条件,故选C.

1x2.(2024·南山模拟)已知条件p:<2<16,条件q:(x+2)·(x+a)<0,若p是q4

的充分不必要条件,则a的取值范围为( )

B.(-∞,-4) D.(4,+∞)

A.[-4,+∞) C.(-∞,-4]

1x 解析:选B 由<2<16,得-2<x<4,

4

即p:-2<x<4.

方程(x+2)(x+a)=0的两个根分别为-a,-2.

①若-a>-2,即a<2,则条件q:(x+2)(x+a)<0等价于-2<x<-a,由p是q 的充分不必要条件可得-a>4,则a<-4;

②若-a=-2,即a=2,则(x+2)(x+a)<0无解,不符合题意;

③若-a<-2,即a>2,则q:(x+2)(x+a)<0等价于-a<x<-2,不符合题意.

综上,可得a的取值范围为(-∞,-4),故选B.

5 / 5

高考数学一轮复习课时跟踪检测(二)命题及其关系、充分条件与必要条件理(普通高中)

课时跟踪检测(二)命题及其关系、充分条件与必要条件(一)普通高中适用作业A级——基础小题练熟练快1.命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它
推荐度:
点击下载文档文档为doc格式
8bj8b1el86667gj1yjqg01k8300wxv01cri
领取福利

微信扫码领取福利

微信扫码分享