.
性质3:若a≡b(mod m),b≡c(mod m),那么a≡c(mod m),(传递性)。
性质4:若a≡b(mod m),c≡d(mod m),那么a±c≡b±d(mod m),(可加减性)。
性质5:若a≡b(mod m),c≡d(mod m),那么ac≡bd(mod m)(可乘性)。
性质6:若a≡b(mod m),那么an≡bn(mod m),(其中n为自然数)。
性质7:若ac≡bc(mod m),(c,m)=1,那么a≡b(mod m),(记号(c,m)表示c与m的最大公约数)。
注意同余式性质7的条件(c,m)=1,否则像普通等式一样,两边约去,就是错的。
例如6≡10(mod 4),而35(mod 4),因为(2,4)≠1。
请你自己举些例子验证上面的性质。
同余是研究自然数的性质的基本概念,是可除性的符号语言。
例1 判定288和214对于模37是否同余,74与20呢?
解:∵288-214=74=37×2。
∴288≡214(mod37)。
∵74-20=54,而3754,
∴7420(mod37)。
例2 求乘积418×814×1616除以13所得的余数。
.
.
分析 若先求乘积,再求余数,计算量太大.利用同余的性质可以使“大数化小”,减少计算量。
解:∵418≡2(mod13),
814≡8(mod13),1616≡4(mod13),
∴ 根据同余的性质5可得:
418×814×1616≡2×8×4≡64≡12(mod13)。
答:乘积418×814×1616除以13余数是12。
例3 求14389除以7的余数。
分析 同余的性质能使“大数化小”,凡求大数的余数问题首先考虑用同余的性质化大为小.这道题先把底数在同余意义下变小,然后从低次幂入手,重复平方,找找有什么规律。
解法1:∵143≡3(mod7)
∴14389≡389(mod 7)
∵89=64+16+8+1
而32≡2(mod 7),
34≡4(mod7),
38≡16≡2(mod 7),
316≡4(mod 7),
.
.
332≡16≡2(mod 7),
364≡4(mod 7)。
∵389≡364·316·38·3≡4×4×2×3≡5(mod 7),
∴14389≡5(mod 7)。
答:14389除以7的余数是5。
解法2:证得14389≡389(mod 7)后,
36≡32×34≡2×4≡1(mod 7),
∴384≡(36)14≡1(mod 7)。
∴389≡384·34·3≡1×4×3≡5(mod 7)。
∴14389≡5(mod 7)。
例4 四盏灯如图所示组成舞台彩灯,且每30秒钟灯的颜色改变一次,第一次上下两灯互换颜色,第二次左右两灯互换颜色,第三次又上下两灯互换颜色,…,这样一直进行下去.请问开灯1小时四盏灯的颜色如何排列?
分析 与解答经观察试验我们可以发现,每经过4次互换,四盏灯的颜色排列重复一次,而1小时=60分钟=120×30秒,所以这道题实质是求120除以4的余数,因为120≡0(mod 4),所以开灯1小时四盏灯的颜色排列刚好同一开始一样。
.
.
十位,…上的数码,再设M=a0+a1+…+an,求证:N≡M(mod 9)。
分析 首先把整数N改写成关于10的幂的形式,然后利用10≡1(mod 9)。
又∵ 1≡1(mod 9),
10≡1(mod 9),
102≡1(mod 9),
…
10n≡1(mod 9),
上面这些同余式两边分别同乘以a0、a1、a2、…、an,再相加得:
a0+a1×10+a2×102+…+an×10n
≡a0+a1+a2+…+an(mod 9),
即 N≡M(mod 9).
这道例题证明了十进制数的一个特有的性质:
任何一个整数模9同余于它的各数位上数字之和。
.
.
以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。
例如,求1827496被9除的余数,只要先求(1+8+2+7+4+9+6),再求和被9除的余数。
再观察一下上面求和式.我们可以发现,和不一定要求出.因为和式中1+8,2+7,9被9除都余0,求余数时可不予考虑.这样只需求4+6被9除的余数.因此,1827496被9除余数是1。
有人时常利用十进制数的这个特性检验几个数相加、相减、相乘的结果对不对,这种检查方法叫:弃九法。
弃九法最经常地是用于乘法.我们来看一个例子。
用弃九法检验乘式5483×9117≡49888511是否正确?
因为 5483≡5+4+8+3≡11≡2(mod 9),
9117≡9+1+1+7≡0(mod 9),
所以 5483×9117≡2×0≡0(mod 9)。
但是 49888511≡4+9+8+8+8+5+1+1
≡8(mod9),
所以 5483×9117≠49888511,即乘积不正确。
要注意的是弃九法只能知道原题错误或有可能正确,但不能保证一定正确。
.