2014年初二数学经典难题
一、解答题(共10小题,满分100分) 1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)
2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.
求证:∠DEN=∠F.
3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.
4.(10分)设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA. 求证:∠PAB=∠PCB.
1
5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.
6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度. 7.(10分)(2009?郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B. (1)写出正比例函数和反比例函数的关系式;
(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;
(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.
2
8.(10分)(2008?海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.
(1)求证:①PE=PD;②PE⊥PD; (2)设AP=x,△PBE的面积为y.
①求出y关于x的函数关系式,并写出x的取值范围; ②当x取何值时,y取得最大值,并求出这个最大值.
9.(10分)(2010?河南)如图,直线y=k1x+b与反比例函数(1)求k1、k2的值. (2)直接写出
时x的取值范围;
(x>0)的图象交于A(1,6),B(a,3)两点.
(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.
3
10.(10分)(2007?福州)如图,已知直线y=x与双曲线(1)求k的值; (2)若双曲线
上一点C的纵坐标为8,求△AOC的面积;
交于A,B两点,且点A的横坐标为4.
(3)过原点O的另一条直线l交双曲线顶点组成的四边形面积为24,求点P的坐标.
于P,Q两点(P点在第一象限),若由点A,B,P,Q为
4
2014年初二数学经典难题
参考答案与试题解析
一、解答题(共10小题,满分100分) 1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)
考点: 专题: 分析:
正方形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定。 证明题。
在正方形内做△DGC与△ADP全等,根据全等三角形的性质求出△PDG为等边,三角形,根据SAS证出△DGC≌△PGC,推出DC=PC,推出PB=DC=PC,根据等边三角形的判定求出即可. 证明:
∵正方形ABCD,
∴AB=CD,∠BAD=∠CDA=90°, ∵∠PAD=∠PDA=15°,
∴PA=PD,∠PAB=∠PDC=75°,
在正方形内做△DGC与△ADP全等,
∴DP=DG,∠ADP=∠GDC=∠DAP=∠DCG=15°, ∴∠PDG=90°﹣15°﹣15°=60°,
∴△PDG为等边三角形(有一个角等于60度的等腰三角形是等边三角形), ∴DP=DG=PG,
∵∠DGC=180°﹣15°﹣15°=150°,
∴∠PGC=360°﹣150°﹣60°=150°=∠DGC, 在△DGC和△PGC中
解答:
,
∴△DGC≌△PGC,
∴PC=AD=DC,和∠DCG=∠PCG=15°, 同理PB=AB=DC=PC,
∠PCB=90°﹣15°﹣15°=60°, ∴△PBC是正三角形.
5