标准
第1单元 分数乘法
第1课时 分数乘法的意义(1)
【教学容】教材第2页例1。 【教学目标】
知识与技能:在学生已有的分数加法及分数基本意义的基础上,结合
生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
过程与方法:通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
情感、态度与价值观:引导学生探求知识的在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。 【重点难点】
重点:理解分数乘整数的意义,掌握分数乘整数的计算方法。 难点:总结分数乘整数的计算法则。 【导学过程】 【情景导入】
(一)探索分数乘整数的意义
1.教学例1(课件出示情景图)
师:仔细观察,从图中能得到哪些数学信息?这里的“个”表
文案
标准
示什么?你能利用已学知识解决这个问题吗?(学生独立思考) 师:想一想,你还能找出不一样的方法验证你的计算结果吗? 2.小组交流,汇报结果 预设:(1)
(个);(2)
(个);(3)
(个);(4)3个就是6个就是,再约分得到(个)。
(根据学生发言依次板书) 3.比较分析
师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设:
生1:每个人吃个,3个人就是3个相加。 生2:3个相加也可以用乘法表示为
。
提出质疑:3个相加的和可以用乘法计算吗?为什么? 预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。
引导说出:分数乘整数的意义与整数乘法的意义相同。(板书) 师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?
引导说出:这两个式子都可以表示“求3个相加是多少”。
文案
标准
师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。 4.归纳小结
通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。
【设计意图:呈现生活情景,引导学生观察思考“一共吃了多少个?”,使学生迅速进入学习状态。以原有的知识和经验为基础,经历独立思考、自主计算并验证、小组交流等环节,鼓励学生大胆地呈现个性化的方法,兼顾了不同层次的学习状态。采用因势利导的方式,通过比较分析沟通新旧知识间的联系,引导学生自主得出结论,加深了对分数乘整数意义的理解。】 (二)分数乘整数的计算方法 1.不同方法呈现和比较
师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,设:
生1:按照加法计算 生2:
=(个)。
(个)。
的计算过程用式子该如何表示?预
文案
标准
师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个。 2.归纳算法
师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢? 引导说出:用分子与整数相乘的积作分子,分母不变。(板书) 3.先约分再计算的教学
师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?
预设:一种算法是先计算再约分,另一种是先约分再计算。 师:比较一下,你认为哪一种方法更简单?为什么?
小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。
【设计意图:通过比较,明确了自主探索的方向,使得对算法的感知上升到理解。教学过程中有意识地留给学生充足的思考时间,最大程度地发挥学生的主体性。“为什么分母不变,只用分子与整数相乘”这是教学的难点,通过多次追问,适度引导转化,促进学生的理解。对于“先约分再计算”这种方法的教学,充分利用课堂生成资源,引导学生经历观察与思考的过程,从而使学生“知其然”,更“知其所
文案
标准
以然”。】
二、巩固练习,强化新知 1.例1“做一做”第1题 师:说出你的思考过程。 2.例1“做一做”第2题
师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。)
文案