=5(m+n)+(r1+r2)由此可知,a除以5的余数等于(r1+r2)除以5的余数,即等于前两个数除
以5的余数之和再除以5的余数.
所以这串数除以5的余数分别为:
1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,……可以发
现,这串余数中,每20个数为一个循环,且一个循环中,每5个数中第一个是5的倍数.
1997÷5=399…2
所以前1997个数中,有399个是5的倍数. 二、解答题: 11.答案:1
解析:因为1997?1997?11?1997? 2211111997??1997???1997?
223311111997??1997???1997?
3344…… 所以1997?1111?1997???1997??1 199619961997199712.答案:750平方米
解析:根据题设可知,第三块比第二块的宽多(4+3=)7米,所以每块长方形的长为 (840-630)÷(4+3)=30(米) 第一块地的面积为:30×(630÷30+4)=750(米) 13.答案:670个老实人
解析:第一天的时候,考虑相邻的三个人,中间的人如果是老实人,那么他左右的两个人都是骗子;中
间的人如果是骗子,那么他左右的两个人中至少有1个是老实人.可见每相邻的三个人中至少有1个老实人.由于2009?3?6692,可以先选取两个人,其中至少有1个是老实人(即任意选取1个老实人,再选取一个与他相邻的人),再将剩下的2007个人每相邻的三人分为一组,共分成669组,那么每组中至少有1个老实人,所以第一天至少有1?669?670个老实人.
第二天的时候,还是考虑相邻的三个人,中间的人如果是老实人,那么他左右的两个人都是骗子;中间的人如果是骗子,那么他左右的两个人中至少有一个和他是同一种人,也就是说至少有一个是骗子,至多有一个是老实人.可见每相邻的三个人中至多有1个老实人.由于2008?3?6691,可以先任意选取1个骗子,再将剩下的2007个人每相邻的三人分为一组,共分成669组,那么每组中至多有1个老实人,所以第二天至多有669个老实人.
由于第二天有一个人没来,所以第一天比第二天至多多1个老实人,那么第一天至多有669?1?670 个老实人,而根据前面的分析,第一天至少有670个老实人,所以第一天恰好有670个老实人.
14.答案:14点40分
解析:(1)火车的速度是每秒多少米?
30?1000??60?60??25(米) 3(2)工人的速度是每秒多少米? 25??110?15??1(米) 3(3)学生的速度是每秒多少米? 110?12?255?(米) 36(4)14点16分时学生、工人相距多远? ?25???1???16?10??60?2640(米) ?3?(5)学生、工人相遇需要多少分?
?5?2640??1???60?24(分)
?6? (6)学生、工人相遇时间: 14点16分+24分=14点40分 15. 答案:6次
解析:自左至右将窗户编为1,2,3,…10号.如果射击6次,“反恐精英”采取以下设计方案:第一次射击1
号窗户,第二次射击3号,第三次射击5号,第四次射击7号,第五次射击9号,第六次射击10号,一一验证知可保证射中这名“恐怖分子”.(还可以前五次都打5号窗户,第六次射击10号).下面证明“反恐精英”仅射击5次不能保证射中这名“恐怖分子”.反之,设第一次射击a1号窗户,第二
次射击a2号,第三次射击a3号,第四次射击a4号,第五次射击a5号.为了保证射中开始位于第k(1?k?6)号窗户里的目标,等式ai?k?i?1号必须至少对一个i成立.对于第i次射击,ai?(i?1)只能得到至多一个1,2,3,4,5,6之间的数,5次射击只能保证一定可以射中1,2,3,4,5,6号窗户之中的5个,不符合题意.于是,为了确保射中这名“恐怖分子”,“反恐精英”至少需要射击6次.