解析:①“3”在个位时,必定是奇数且每十个数中出现一个.1×〔(301-1)÷10〕=30(个); ②“3”在十位上时,个位数只能是1,3,5,7,9,这个数是奇数.每100个数共有五个.
5×[(301-1)÷100]=15(个);
③“3”在百位上,只有300与301两个数,其中301是奇数. 因此,在1~301所有奇数中,数字“3”出现30+15+1=46(次). 7. 答案:11天
解析:(26500-2180×5)÷(2180+420)+5=(26500-10900)÷2600+5=11(天) 8. 答案:76千米/时,120米
解析:把火车与人的速度差分成8段,火车与汽车速度差也就是1段.可得每段表示的是(67-4)÷(8-1)
=9(千米/时).火车的速度是67+9=76(千米/时),9×1000÷3600=2.5(米/秒),2.5×48=120(米).
9. 答案:28
11解析:将3个数求平均数,就用每个数的相加,在4次计算中,每个数只出现过其中3次,一个数的
33作三次相加,就是原数.因此(23+26+30+33)÷4=28.
10. 答案:49)
1 解析:由相向行程问题,若它们一直保持相向爬行直至相遇所需时间是100?1.26???5.5?3.5??7
2(秒),由爬行规则可知第一轮有效前进时间是1秒,第二轮有效前进时间是5-3=2(秒)…….由下表可知
实际耗时为1+8+16+24=49(秒),相遇有效时间为1+2×3=7秒.它们相遇时爬行的时间是49秒.
二、解答题: 11. 答案:90岁
解析:
?1?12. 答案:?26?
?4?解析:设最小分数为
M,列表如下: N285=a=a528MM56分数除法计算法则15×÷=b=bN1556被除数乘以除数的倒数N201=c1=c2120因为
M是最小值,且a,b,c均这整数,所以M是5,15,21的最小公倍数; NM1051??26. N44N是28,56,20的最大公约数.因此,符合条件的最小分数:
13. 答案:0
解析:由已知条件得:3a=b+d+e,3b=a+c+f,3c=b+d+g,3d=a+c+h,
把这四式相加得3(a+b+c+d)=2(a+b+c+d)+(e+f+g+h). 所以(a+b+c+d)=e+f+g+h,即原式值为0.
14. 答案:(1)2厘米;(2)54平方厘米;(3)120平方厘米;(4)312平方厘米
解析:(1)从图中可看出,有(20-1=)19个间隔,每个间隔距离是(44-6)÷19=2(厘米). (2)观察三个三角形的迭合.画横行的两个三角形重叠画井线是三个三角形重叠部分,
它是与原来的三角形一般模样,但底边是原来三角形底的高的
1(2厘米),高也是原来三角形311(3厘米),所以面积为?3?2?3(cm2).每三个连着的三角形重叠产生这样的32一个小三角形,每增加一个大三角形,就多产生个一个三次重叠的三角形,而且与前一个不重叠.因此这样的小三角形共有20-2=18(个),面积之和是3×18=54(cm2).
2226
(3)每两个连着的三角形重叠分,也是原来的三角形一般模样的三角形,
底边是原来三角形的
1?2??2?22,高是原高的,因此面积是.??6????9???12?cm2?.
2?3??3?33 每增加一个大三角形就产生一个小三角形.共产生20-1=19(个),面积19×12=228(cm2). 所求面积228-54×2=120(cm2)
(4)20个三角形面积之和,减去重叠分,其中120cm2重叠次,54cm2重叠次.
1?6?9?20?120?54?2?312?cm2? 215. 答案:300千米
解析:因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此S甲:S乙?V甲:V乙?3:7,设全程为
10份,则一个全程中,甲走了3份,乙走了7份,通过总结的规律分析第2008次相遇时,甲走:(2008?2?1)?3?12045(份),12045?10?12045,所以第2008次相遇地点是在从A地向右数5
12051?10?12051,份的C点,第2009次相遇时甲走:(2009?2?1)?3?12051(份),所以第2009
次相遇地点在从B点向左数1份的D点,由图看出CD间距离为4份,A、B两地之间的距离是120?4?10?300(千米).
20082009甲ACD乙B
第五套2016/4/17 姓名
一、填空题: 1. 2.
111111111?3?5?7?9?11?13?15?17?( )
612203042567290“趣味数学”表示四个不同的数字:
则“趣味数学”为( ) 3.
某钢厂四月份产钢8400吨,五月份比四月份多产则第二季度计划产钢( )吨. 4. 5. 6.
把
1,两个月产量和正好是第二季度计划产量的75%,71化为小数,则小数点后的第100个数字是( ),小数点后100个数字的和是( ) 71,那么,冰再化成水时,体积会减少( ) 11两只同样大的量杯,甲杯装着半杯纯酒精,乙杯装半杯水.从甲杯倒出一些酒精到乙杯内.混合均匀后,再从乙杯倒同样的体积混合液到甲杯中,则这时甲杯中含水和乙杯中含酒精的体积( )大 水结成冰的时候,体积增加了原来的
加工一批零件,甲、乙二人合作需12天完成;现由甲先工作3天,然后由乙工作2天还剩这批零件的
7.
458.
没完成.已知甲每天比乙少加工4个则这批零件共有( )个
一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图所示.它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米,瓶子倒放时,空余部分的高为2厘米,则瓶内酒精体积是( )立方厘米.
9.
有一个算式,上边方格里都是整数,右边答案只写出了四舍五入后边三个方格中的数依次分别是( ) 10.
一个四位数xxyy,使它恰好等于两个相同自然数的乘积,则这个四位数是( )
3?5?7?1.16的近似值.则算式上
二、解答题: 11.
如图,阴影部分是正方形,则最大长方形的周长是多少厘米?
6厘米9厘米
12. 如图为两互相咬合的齿轮.大的是主动轮,小的是从动轮.大轮半径为105,小轮半径为90,现两轮标志线在同一直线上,问大轮至少转了多少圈后,两条标志线又在同一直线上?
10590
13.
请你用1,2,3,4,5,6,7,8,9这九个数字,每个只能用一次,拼凑出五个自然数.让第二个是第一个的2倍,第3个是第一个的3倍,第四个是第一个的4倍,第五个是第一个的5倍.求这五个自然数分别为多少? 14.
有一列数2,9,8,2,6,…从第3个数起,每个数都是前面两个数乘积的个位数字.例如第四个数就是第二、第三两数乘积9×8=72的个位数字2.问这一列数第1997个数是几? 15.
甲、乙两个工程队分别负责两项工程.晴天,甲完成工程需要10天,乙完成工程需要16天;雨天,甲和乙的工作效率分别是晴天时的30%和80%.实际情况是两队同时开工、同时完工.那么在施工期间,下雨的天数是多少天?
答案部分
一、填空题: 1. 答案:81.4
111111??11?????? 解析:原式??1?3?5?7?9?11?13?15?17??????612203042567290?1111111??1??????? ?81??? ?2?33?44?55?66?77?88?99?10??11??11??11??11??11??11??11??11? ?81????????????????????????????????
?23??34??45??56??67??78??89??910? ?81?11? 210 ?81.4 2. 答案:3201
解析:根据算式进位乘积前两位数字是1和0.“趣味数学”ד趣”的千位数字是9,就有“趣”=3,显然,
“数”=0.而味“味”ד趣”不能有进位,“味”ד趣”+ “味”ד趣”向百万位进1,所以“味”=2,同理,“学”=1.所以答案为3201
3. 答案:24000
1??解析:四、五月产量和8400??1?1???18000(吨),第二季度产量18000÷75%=24000(吨).
7??4. 答案:8,447
解析:讲
??11化成小数,得到?0.142857,由周期性可得: 77(1)100=16×6+4,所以小数点后第100个数字与小数点后第4个数字一样即为8; (2)小数点后前100个数字的和是:16×(1+4+2+8+5+7)+1+4+2+8=447.
5. 答案:
1 12解析:设水为11升,结成冰有12升,化成水当然是11升,但此时问题是:冰化成水时比并减少的量,
因此减少了?12?11??12?6. 答案:一样大
解析:甲、乙两杯中液体的体积,最后与开始一样多,所以有多大体积纯酒精从甲杯转到乙杯,就有多
大体积的水从乙杯转入了甲杯,即甲杯中含水和乙杯中含酒精体积相同.
1. 12