故 △S i so = 0
(2)
△U = 0,
Q2= -W = pamb(V2 – V1)= pamb {(nRT / pamb)-(nRT / p1) = nRT{ 1-( pamb / p1)}
= {-1××300×()} J = 1247 J = kJ
?Ssys??nRln(p2/p1)
= {- 1××ln(50/100)} J·K-1 = J·K-1
?Samb??Qsys/Tamb= (-1247÷300)J·K= - J·K
-1
-1
△S iso= △Ssys + △Samb = { +(- )} J·K-1 = J·K-1 (3)△U = 0,W = 0,Q=0
?Samb??Qsys/Tamb= 0
因熵是状态函数,故有
?Ssys?nRln(V2/V1)?nRln(2V1/V1)
= {1××ln2 } J·K-1 = J·K-1
△S iso= △Ssys + △Samb = J·K-1
3-16 始态 300 K,1Mpa 的单原子理想气体 2 mol,反抗 Mpa的恒定外压绝热不可逆膨胀平衡态。求整个过程的W,△U,△H,△S。
解:Q = 0,W = △U
3R(T2?T1)2
?nET2nRT1?3??pamb???n?R(T2?T1)?p?p21??amb?pamb(V2?V1)?n?代入数据整理得 5T2 = T1 = ×300K;故 T2 = 204 K
3W??U2?{2?R?(204?300)}J??2395J??2.395kJ25?H?{2?R?(204?300)}J??3991J??3.991kJ
2?S?nCp,mlnT2p?nRln2T1p152040.2 ?{2?R?ln?2?Rln}J?K?123001 ?{?16.033?26.762}J?K?1?10.729J?K?1?10.73J?K?1
3-18 单原子气体A与双原子气体B的理想气体化合物共8 mol,组成为 y(B)= ,始态 T1 = 400 K,V1 = 50 dm3。今绝热反抗某恒定外压不可逆膨胀至末态体积V2 = 250 dm3的平衡态。。求过程的W,△U,△H,△S。
解:先求混合物的摩尔定压热容
CV,m,mix??yBCp,m(B)?0.25?B53R?0.75?R?1.75R 22Q = 0,W = △U
?pamb(V2?V1)?nCV,m,mix(T2?T1) nET2?V2?V1??n?1.75R(T2?T1)?V2将数据代入,得 T2 = T1= ×400K,故 T2 = K
W??U?{8?1.75R?(274.51?400)}J??14610J??14.61kJ Cp,m,mix?CV,m,mix?R?1.75R?R?2.75R
?H?{8?2.75R?(274.51?400)}J??22954J??22.95kJ
nB?yBn?0.25?8mol?2mol, nA?6mol
?S(A)?nACp,m(A)lnT2V?nARln2T1V1
3274.51250 ?{6?R?ln?6?Rln}J?K?1 ?{?28.172?80.29}J?K?1?52.118J?K?1240050?S(B)?nBCp,m(B)lnT2V?nBRln2T1V15274.51250 ?{2?R?ln?2?Rln}J?K?1 ?{?15.651?26.763}J?K?1?11.112J?K?1
240050?S??S(A)??S(B)?(52.118?11.112)J?K?1?63.23J?K?13-19 常压下将 100 g,27 ℃的水与 200g,72℃的水在绝热容器中混合,求最终温度t 及过程的△S。已知水的比定压热容 cp = J·g-1·K-1。
解:Qp = 0,△H = 0,△H1 +△H2 = 0 100××(T2 – )+200××(T2 – )=0 T2 – + 2×(T2 – )=0 T2 = K 即 t = 57 ℃
-1330.15330.15???1= J·K ?S??100?4.184?ln?200?4.184?lnJ?K?300.15345.15??3-27 已知下冰的熔点为 0℃,摩尔熔化焓△fusHm(H2O)= k J·mol-1,苯的熔点为℃,摩尔熔化焓△fusHm(C6H6)= k J·mol-1。液态水和固态苯的定压摩尔热容Cp,m(H2O,l) = J·mol-1·K-1及Cp,m(C6H6,s) = J·mol-1·K-1。
今有两个用绝热层包围的容器,一容器中为0℃的 8 mol H2O(s)与2 mol H2O(l)成平衡。另一容器中为℃的5 mol C6H6(l)与 5 mol C6H6(s)成平衡。
现将两容器接触,去掉两容器间的绝热层,使两容器达到新的平衡。求过程的△S。
解:设液态苯全部凝固,冰全部融化,于是示意如下
8molH2O(s), 2molH2O(l), 0oC5molC6H6(s), 5molC6H6(l), 5.51Co?0?Q???8molH2O(l), 2molH2O(l), t5molC6H6(s), 5molC6H6(s),t
8mol×6004 J·mol-1+10mol× J·mol-1·K-1(T2 - )
+5mol×(-9832)J·mol-1 +10mol× J·mol-1·K-1×()=0 T2 = T2 = 所以,t=℃,0℃<℃<℃,假设合理。
277.31??8?6004?1?S(H2O)???10?75.37ln?J?K
273.15??273.15=(+)J·K-1= J·K-1
277.31??5?(?9832)?1?S(C6H6)???10?122.59ln?J?K
278.66??278.66=( - )J·K-1= J·K-1
△S = △S1 + △S2 = J·K-1 - J·K-1 = J·K-1
3-29 已知苯(C6H6)在下于 ℃沸腾,△vapHm= kJ·mol-1。液体苯的摩尔定压热容Cp,m = J·mol-1·K-1。
今将 Kpa, ℃的苯蒸气 1 mol,先恒温可逆压缩至,并凝结成液态苯,再在恒压下将其冷却至60℃。求整个过程的Q,W,△U,△H及△S 。
解:把苯蒸气看作是理想气体,恒温可逆压缩时,△U1=0,△H1=0,于是有
W1?nRTln(p2/p1) ?{1?8.3145?353.25?ln(101.325/40.53)}J?2691J
W2 = -pamb(Vl – Vg) ≈pambVg = ng RT= (1××)J = J W3 ≈ 0; W= W1 + W2 + W3=(2691++0)J= 5628 J = kJ △U1 = 0,Q1 = W1 = 2937 J; Q2 = -30878 J
Q3??333.15K353.25KnCp,mdT?{1?14.27?(333.15?353.25)}J??2868J
Q = Q1 + Q2 + Q3 = {(-2691)+( -30878)+( – 2868)}= - 36437J