好文档 - 专业文书写作范文服务资料分享网站

技术效率理论

天下 分享 时间: 加入收藏 我要投稿 点赞

技术效率理论

-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

技术效率理论

1.技术效率的发展

Farmll(1957)关于技术效率的研究开创了一个崭新的分析框架,使技术进步的概念脱离了平均生产函数,而与边界生产函数联系起来。这时达到最佳生产状态的经济主体的生产行为点分布在生产边界上,其他只能分布在生产函数的内部,所以这种方法体现了最优与非最优的对比,从而较索洛的方法更加贴近现实。接下来的一个进展就是确定性边界函数的分析方法,包括确定性参数边界生产函数和确定性统计边界生产函数,这种分析框架认为生产行为偏离生产边界的唯一原因是技术效率损失。毛世平(1998)综述了这三种方法的局限性,认为:确定性边界生产函数只能回答效率能否提高的问题,但不能指出资源利用效率通过何种途径以及如何提高的问题;采用机率边界生产函数进行估计时,其概率是主观确定的,是对未来技术进步程度效果的预测,因而具有一定的假定性。而利用修正的最小二乘法估计确定性统计边界生产函数时,技术效率的平均值取决于对残差分布的假设,不同的分布会导致不同的平均技术效率,即有不同的技术效率(这一点同样适用于随机边界生产函数)1。

假设有N个被观察的经济主体,都以K种投入生产产出Y,那么,就有生产函数:Y=XB+μ-V=XB+ω。其中,Y是N×1维向量;X是N×K维投入向量;B是K×1维待估计的参数向量;V和μ分别代表效率误差和随机因素,均为N×1维。

这一分析框架起初用于估计截面数据,后来拓展到panel数据。在使用panel数据估计生产边界时,如果加入时间趋势变量,就可以考察生产边界的变化。出于简捷起见,这里不再赘述分析各种方法及其改进过程,只简要介绍Battese和Goelli(1995)论文的方法:用TE代表技术效率,则有:TE=E(Y*|V,X)/E(Y*|V=0,X),E表示数学期望。这里利用TE=α+∑βW十e,就可以分析影响技术效率的因素,其中α和β是待估计的参数,e为随机扰动项,W为各种可能影响技术效率的社会经济因素和生产技术因素。Battese和coelli的论文是技术效率研究的重要进展,其贡献之一是在方法论上提出了技术效率本身由其他因素系统的决定的假定,之二是对同时估计边界生产函数本身和技术效率的决定因素时的统计性质做了论证。

随机边界生产函数方法是应用研究中广泛使用的方法,这是因为它具有许多优越性。它最大的优点就是通过估计生产函数对经济主体的生产过程进行了描述,并能够对技术效率的影响因素进行控制。而且计量经济学的发展为这种参数方法的应用奠定了理论和方法上的基础。但是,其也有明显的不足之处:一是对于影响生产函数的随机因素和技术效率的决定因素需要事先人为的设定一种分布结构,这不免带有很大的主观性。二是这种方法中使用的数据不免受市场价格的社会经济因素的影响,需要繁复的处理过程。三是这种方法只能处理单产出的情形,无法处理多产出的情况。四是由于技术进步本质上是对原有技术描述的推翻,参数方法不得不使用中性技术进步的假定作为变化前后生产函数形式上的纽带,这既会造成技术进步率测度的偏差,也无法体现生产前沿移动带来的生产资源配置效率变化和技术变化的一致性描述(孙巍,1999)。

实际上,对于边界生产函数的估计,在经济学中有两类处理方法,一类就是参数方法,另一类就是以规划为基础的非参数方法。非参数方法的指导思想是:首先,利用对样本经济主体的投入产出的实际观测数据,构造凸锥或者凸集,最佳生产单位的生产行为点就分布在锥面或凸多面体的面上,形成生产的边界,其他的生产行为点分布在其内部,因此,这种方法又形象的称为数据包络分析(简称DEA)。然后,利用距离函数比较各生产行为点与生产边界,就得到了技术效率(关于DEA的具体方法将在下一小节专门讨论)。

比较参数方法,数据包络分析具有估计技术上的优越性。其显着特点就是最优性、客观性以及适应性。

其一,最优性。DEA边界估计的效率是相对于Pareto效率前沿的,而后者估计了最优绩效(Murthi,1997)。这满足古典和新古典的利润最大化、收入最大化和成本最小化等厂商行为的目标准则。

1

关于Farrrll的方法局限性,参见毛世平(1998)

其二,客观性。DEA方法可直接利用生产的统计数据,排除了市场价格因素的干扰。DEA的前沿面不仅适应参数的和非随机的,也适应非参数和随机的生产函数,因为它不对潜在技术设定任何事前的约束参数,即它不需要任何生产函数形式来说明生产的边界,在避免主观因素和简化算法、减少误差等方面有着不可低估的优越性。DEA不要求技术效率符合任何假设分布。因此这种方法避免给前沿技术和可能造成效率测量的扭曲的非效率成分强加上无根据的事先构造(Fare等,1985)。DEA最小化的假设要求效率边界是单调和凸的(Banker等,1984;Wadud,2003)。因此,它能基于最优生产单元获得存在技术非效率生产单元的效率改进的目标值,而且没有测量误差和其他随机干扰。

其三,适应性。DEA能够处理多投入多产出的复杂生产系统,而且由于它可以直接利用不同量纲的实际观测数据,因而极具可操作性。DEA不但能够估计确定边界生产函数,又能估计随机边界生产函数。另外在该方法下,可以发现松弛变量,做灵敏度分析,通过模型变换还可以做边际分析,这是参数方法所不及的。此外,在这种分析框架下,可以分析规模效率、可变规模的技术效率、经济结构的效率等问题。

但是,数据包络分析也有一些局限性。一是它一般要求被考察的经济主体具有相同任务和目标以及相同的投入和产出;二是在估计过程中异常观测值对估计结果有很大的影响;三是对于不同经济主体的特征和技术效率的决定结构难以控制。

通过上述研究方法的比较,我们选用DEA展开对中国农业技术进步和效率问题的研究。这不但因为方法本身具有的特点,而且因为:①农业生产是利用生物机体自身的功能进行的,不同经济主体间投入产出变量又非常相似,因而技术同质性较好,可以充分利用DEA的客观性的优点。②DEA方法可以和malmquist生产率指数及其研究框架珠联璧合的使用,可以同时得到技术前沿变化、技术效率变动和全要素生产率变动的情况以及前两者对后者变动的作用。

2.数据包络分析的建模思想和基本步骤

数据包络分析(DataEnvelopmentAnalysis,简称DEA)是一种测算具有相同类型投入和产出的若干部门相对效率的有效方法。DEA源于1957年farrell在对英国农业生产力进行分析时提出了包络思想,并以farrell技术效率概念为基础。DEA测量效率有两种等价的方法即分式方法和线性规划方法,这里阐述线性规划方法。

DEA的基本思想是通过基于生产可能性集的投入和产出向量,应用线性规划技术构造表示生产可能性集边界的技术前沿面,构造结果可以是凸锥面或凸集面。这样处于技术前沿的观测样本和其他样本一起构成凸锥和凸集,如果把单个样本与技术前沿相比较即可得出该样本的技术效率,如果被估计的样本在技术前沿上,它的技术效率就是1,如果在生产可能性集内部它的技术效率就小于1。这里需要注意的是:即使技术效率为1,并不能说明全部要素都得到了最充分的利用,有可能存在松弛变量,也就是说虽然利用不充分,在现有技术和其他条件下产出也不能再提高。所以这里就有一个强有效和弱有效的区别。DEA的具体建模步骤如下:

3

(1)定义生产可能性集。DEA的建模过程是在新古典假设下进行的:设有K个经济体均以生产函数y=f(z)进行生产,表示可由投入x生产y产品,这里可以是单投入单产出,也可为多投入多产出,后一种情况下x和y分别为投入产出向量。

y=f(x)=f(x1,x2,…,xn)是定义在E+N={x|x0,x∈RN+}上的一阶连续可导函数,而且满足:①f’(x)>0,即为增函数,表示随任意一种投入要素增加,产出增加;②f(x)为凹函数,即要素的边际产量递减;③f(x)为r阶奇次函数,即ψ(λx)=λ’ψ(x);④r≤1,即规模收益非递增。

对于这K个经济体,有N种投入要素XK∈RN+,有M种产出YK∈RN+,满足静态技术的生产可能性集由观测样本(xk,yk)k=1,2,…,K组成,记为:

T^={(xk,yk):由xk可以生产yk;k=1,2,…,K}

在规模报酬恒定(CRS)假设下,生产可能性集由以下四条公理确定:①凸性。即对任意的(x,y)∈T及(x^,y^)∈T,则α(x,y)+(1一α)(x^,y^)∈T;或[αx+(1一α)x^,αy+(1一α)y^]∈T。这里α∈[0,1]。②无效性。对任意(x,y)∈T,且x^≥x,均有(x^,y)∈T;对任意(x,y)∈T,且y^≤y,均有(x,y^)∈T。③最小性。即生产可能性集T是满足①与②的所有集合的交集。④锥性。对任意的(x,y)∈T及数l≥0,均有k(x,y)=(lx,ly)∈T,因此,生产可能性集可表示为凸锥T:T={(x,y)|∑xKλK≤x,∑xkλk≥y,λk≥0,k=1,2…,K}。

(2)在定义生产可能性集的基础上,利用实际观测样本构造出生产前沿面,并进行技术效率的估计。与技术效率的概念相一致,这里可以从投入和产出两种方法进行。前者是假设被考察经济体的投入固定不动为x0(或至少不大于x0),度量实际产出与拟合生产前沿下的潜在产出之比作为产出效率。后者是假设被考察经济体的产出固定不动为y0(或至少不小于y0),度量在拟合生产前沿下投入的可压缩程度,作为投入效率。被测经济体的技术效率就由产出或投入效率表示。两者的经济内涵有差异,只有在规模收益不变和要素自由处置的条件下才是等价的。在结合两者的方向上也出现了许多改进的模型。

5.2.2.2基础模型(投入技术效率模型)

在T技术假设下,投入角度的技术效率就可以定义为:

4

Fi(x,y)=min(θ:θx∈T}

则技术效率可以由以下线性规划问题得到:

λ≥0,h=1,2,…,K;n=1,2,…,N;m=1,2,…,M

此模型就是美国运筹学家A.charrles、和ERhodes给出的C2R模型,其中,F(.)为效率函数,下标0代表被测度的经济主体。可见,如果该模型用于截面数据集的技术效率评估,就可得到观测样本中任一经济主体i的技术效率θi。如果引入时间因素t,上文的生产可能性集和技术效率就是时点t下的情形。

2.3数据包络分析的最新进展

由于在截面数据的经验研究中,出现了技术进步为负的情形,这给经济解释造成了困难。这引发了Hendemon和Rusell(2002)的改进,即引入“过去技术不会遗忘”假定。这一假定是说,在生产可能性集中,不但要包络进K个经济体当期观测样本,而且还要包络进它们过去时期的观测样本。按照这一思想技术可以定义为凸锥:

不难理解这个新的生产可能性集,是包含了t期的观测样本,如果t只有一个时期,那么,Tt和T就是等价的。与此相适应,技术效率的模型就改进为:

tF0t(xt0,y0)?Min?0txt0,yt0??,N(1)

s..t????t=1tt=1tttttttxz??(x,y)xk000n,n?1,2kn0k?1Kk?1ttytkmzk?y0m,m?1,2K,M,ttzk?0,k?1,2,,K,t?1,2,为:之所以出现这种技术进步为负的情形,是在定义生产可能性集时,用每个时期里的观测值定义生产可能性曲线这种方式造成的。

如图1所示,射线yt+1表示的技术对于yt代表的技术是进步的,因为t时刻u在技术前沿qt上,而到t+1时刻却陷落到ut+1的位置,使ωt成为t+1时刻的前沿,那么,此时沿着yt测度的技术就变成了退步的了。我们认为这种解释较比“过去的技术不会遗忘的假设”更为可取。

5

技术效率理论

技术效率理论-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII技术效率理论1.技术效率的发展Farmll(1957)关于技术效率的研究开创了一个崭新的分析框架,使技术进步的概念脱离了平均生产函数,而与边界生产函数联系起来。这时达到最佳生产状态的经济
推荐度:
点击下载文档文档为doc格式
8ar4x1jh211cf865breu5a66i6tmb7010wy
领取福利

微信扫码领取福利

微信扫码分享