动力学、动量和能量观点的综合应用
解决力学问题的三种解题思路
1.以牛顿运动定律为核心,结合运动学公式解题,适用于力与加速度的瞬时关系、圆周运动的力与运动的关系、匀变速运动的问题,这类问题关键要抓住力与运动之间的桥梁——加速度.
2.从动能定理、机械能守恒定律、能量守恒定律的角度解题,适用于单个物体、多个物体组成的系统的受力和位移问题.
3.从动量定理、动量守恒定律的角度解题,适用于单个物体、多个物体组成的系统的受力与时间问题(不涉及加速度)及相互作用物体系统的碰撞、打击、爆炸、反冲等问题.
例
2 如图4所示,质量为m的b球用长h的细
绳悬挂于水平轨道BC的出口C处.质量也为m的小球a,从距BC高h的A处由静止释放,沿光滑轨道ABC下滑,在C处与b球正碰并与b黏在一起.已知BC轨道距地面的高度为
6 / 19
0.5h,悬挂b球的细绳能承受的最大拉力为2.8mg.试问:
图4
(1)a球与b球碰前瞬间的速度多大?
(2)a、b两球碰后,细绳是否会断裂?若细绳断裂,小球在DE水平面上的落点距C的水平距离是多少?若细绳不断裂,小球最高将摆多高?
力学规律的优选策略
1.牛顿第二定律揭示了力的瞬时效应,在研究某一物体所受力的瞬时作用与物体运动的关系时,或者物体受恒力作用,且又直接涉及物体运动过程中的加速度问题时,应采用运动学公式和牛顿第二定律.
2.动量定理反映了力对事件的积累效应,适用于不涉及物体运动过程中的加速度而涉及运动时间的问题.
7 / 19
3.动能定理反映了力对空间的积累效应,对于不涉及物体运动过程中的加速度和时间,而涉及力、位移、速度的问题,无论是恒力还是变力,一般都利用动能定理求解.
4.如果物体只有重力或弹簧弹力做功而不涉及物体运动过程中的加速度和时间,此类问题则首先考虑用机械能守恒定律求解.
5.在涉及相对位移问题时则优先考虑能量守恒定律,及系统克服摩擦力所做的功等于系统机械能的减少量,系统的机械能转化为系统内能.
6.在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,必须注意到一般过程中均含有系统机械能与其他形式能量之间的转化.这类问题由于作用时间都很短,动量守恒定律一般大有作为.
变式题组
8 / 19
1
3.如图5所示,一个半径R=1.00m的粗糙圆弧轨道,固定在竖直平面内,其下端切线是4水平的,距地面高度h=1.25m.在轨道末端放有质量mB=0.30kg的小球B(视为质点),B左侧装有微型传感器,另一质量mA=0.10kg的小球A(也视为质点)由轨道上端点从静止开始释放,运动到轨道最低处时,传感器显示示数为2.6N,A与B发生正碰,碰后B小球水平飞出,落到地面时的水平位移x=0.80m,不计空气阻力,重力加速度取g=10m/s2.求:
图5
(1)小球A在碰前克服摩擦力所做的功; (2)A与B碰撞过程中,系统损失的机械能.
4.(2016·丽水调研)如图6所示,水平地面上静止放置一辆小车A,质量mA=4kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计.可视为质点的物块B置于A的最右端,B的质量mB=2kg.现对A施加一个水平向右的恒力F=10N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6s,二者的速度达到v1=2m/s.求:
9 / 19
图6
(1)A开始运动时加速度a的大小; (2)A、B碰撞后瞬间的共同速度v的大小; (3)A的上表面长度l.
1.一质量为0.5kg的小物块放在水平地面上的A点,距离A点5m的位置B处是一面墙,如图1所示.物块以v0=9m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7 m/s,碰后以6m/s的速度反向运动直至静止.g取10 m/s2.
10 / 19