好文档 - 专业文书写作范文服务资料分享网站

(完整版)新北师大版七年级数学下册第二章相交线与平行线知识点梳理汇总

天下 分享 时间: 加入收藏 我要投稿 点赞

新北师大版七年级数学下册 第二章 相交线与平行线

知识点梳理汇总

一、知识结构图

余角 余角补角 补角 两线相交 对顶角

角 相 交 线与 平 行 线 同位角 三线八角 内错角 同旁内角 平行线的判定 平行线 平行线的性质 尺规作图 二、基本知识提炼整理 (一)余角与补角 1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。 2、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。

3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。

4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。 5、余角和补角的性质用数学语言可表示为:

(1)?1??2?900(1800),?1??3?900(1800),则?2??3(同角的余角或补角相

等)。

(2)?1??2?900(1800),?3??4?900(1800),且?1??4,则?2??3(等角的余角(或补角)相等)。

6、余角和补角的性质是证明两角相等的一个重要方法。 (二)对顶角

1、两条直线相交成四个角,其中不相邻的两个角是对顶角。

2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。 3、对顶角的性质:对顶角相等。

4、对顶角的性质在今后的推理说明中应用非常广泛,它是证明两个角相等的依据及重要桥梁。

5、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。 (三)同位角、内错角、同旁内角

1、两条直线被第三条直线所截,形成了8个角。

2、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。

3、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。

4、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。

5、这三种角只与位置有关,与大小无关,通常情况下,它们之间不存在固定的大小关系。 (四)六类角

1、补角、余角、对顶角、同位角、内错角、同旁内角六类角都是对两角来说的。 2、余角、补角只有数量上的关系,与其位置无关。

3、同位角、内错角、同旁内角只有位置上的关系,与其数量无关。 4、对顶角既有数量关系,又有位置关系。 (五)平行线的判定与性质

平行线的判定 1、同位角相等,两直线平行 2、内错角相等,两直线平行 3、同旁内角互补,两直线平行 4、平行于同一条直线的两直线平行 5、垂直于同一条直线的两直线平行 (六)尺规作线段和角

1、在几何里,只用没有刻度的直尺和圆规作图称为尺规作图。 2、尺规作图是最基本、最常见的作图方法,通常叫基本作图。 3、尺规作图中直尺的功能是: (1)在两点间连接一条线段; (2)将线段向两方延长。 4、尺规作图中圆规的功能是:

(1)以任意一点为圆心,任意长为半径作一个圆; (2)以任意一点为圆心,任意长为半径画一段弧; 5、熟练掌握以下作图语言: (1)作射线××;

(2)在射线上截取××=××;

(3)在射线××上依次截取××=××=××;

(4)以点×为圆心,××为半径画弧,交××于点×;

(5)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点×; (6)过点×和点×画直线××(或画射线××);

(7)在∠×××的外部(或内部)画∠×××=∠×××;

6、在作较复杂图形时,涉及基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了。 (1)画线段××=××; (2)画∠×××=∠×××;

平行线的性质 1、两直线平行,同位角相等 2、两直线平行,内错角相等 3、两直线平行,同旁内角互补 4、经过直线外一点,有且只有一条直线与已知直线平行

(完整版)新北师大版七年级数学下册第二章相交线与平行线知识点梳理汇总

新北师大版七年级数学下册第二章相交线与平行线知识点梳理汇总一、知识结构图余角余角补角补角两线相交对顶角角相交线与平行
推荐度:
点击下载文档文档为doc格式
8a3d31bdje8wrp7230mk0mq5e7eayt017wf
领取福利

微信扫码领取福利

微信扫码分享