22.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点. (1)观察猜想
图1中,线段PM与PN的数量关系是 ,位置关系是 ; (2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由; (3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
23.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.
(1)求点B的坐标和抛物线的解析式;
(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.
①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;
②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.
2017年中招考试数学试卷
参考答案与试题解析
一.选择题(共10小题)
1.(2017?河南)下列各数中比1大的数是( ) A.2
B.0
C.﹣1 D.﹣3
【解答】解:2>0>﹣1>﹣3, 故选:A.
2.(2017?河南)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示( )
A.74.4×1012 B.7.44×1013 C.74.4×1013 D.7.44×1015 【解答】解:将74.4万亿用科学记数法表示为:7.44×1013. 故选:B.
3.(2017?河南)某几何体的左视图如图所示,则该几何体不可能是( )
A. B. C. D.
【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1, D不符合, 故选D.
4.(2017?河南)解分式方程
﹣2=
,去分母得( )
A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 【解答】解:分式方程整理得:去分母得:1﹣2(x﹣1)=﹣3, 故选A
﹣2=﹣
,
D.1﹣2x+2=3
5.(2017?河南)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( ) A.95分,95分
B.95分,90分
C.90分,95分
D.95分,85分
【解答】解:位于中间位置的两数分别是95分和95分, 故中位数为95分,
数据95出现了3次,最多, 故这组数据的众数是95分, 故选A.
6.(2017?河南)一元二次方程2x2﹣5x﹣2=0的根的情况是( ) A.有两个相等的实数根
B.有两个不相等的实数根
C.只有一个实数根 D.没有实数根
【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0, ∴方程有两个不相等的实数根. 故选B.
7.(2017?河南)如图,在?ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定?ABCD是菱形的只有( )
A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2
【解答】解:A、正确.对角线垂直的平行四边形的菱形. B、正确.邻边相等的平行四边形是菱形.
C、错误.对角线相等的平行四边形是矩形,不一定是菱形.
D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形. 故选C.
8.(2017?河南)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )
A. B. C. D. 【解答】解:画树状图得:
∵共有16种等可能的结果,两个数字都是正数的有4种情况, ∴两个数字都是正数的概率是:故选:C.
9.(2017?河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为( )
=.