.
2024年全国统一高考数学试卷(文科)(新
课标Ⅰ)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.(5分)设z=A.2
,则|z|=( ) B.
C.
D.1
2.(5分)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则
B∩?UA=( )
A.{1,6}
B.{1,7}
0.2
0.3
C.{6,7} D.{1,6,7}
3.(5分)已知a=log20.2,b=2,c=0.2,则( ) A.a<b<c
B.a<c<b
C.c<a<b
D.b<c<a
4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是
(
≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,
.若某人满足上述两
最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是
个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是( )
A.165cm
B.175cm
C.185cm
D.190cm
5.(5分)函数f(x)=在[﹣π,π]的图象大致为( )
A.
.
.
B.
C.
D.
6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A.8号学生
B.200号学生
C.616号学生
D.815号学生
7.(5分)tan255°=( ) A.﹣2﹣
B.﹣2+
C.2﹣
D.2+
8.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为( ) A.
B.
C.
D.
9.(5分)如图是求的程序框图,图中空白框中应填入( )
.
.
A.A=
B.A=2+
C.A=
D.A=1+
10.(5分)双曲线C:的离心率为( ) A.2sin40°
﹣=1(a>0,b>0)的一条渐近线的倾斜角为130°,则CB.2cos40° C. D.
11.(5分)△ABC的内角A,B,C的对边分别为a,b,c.已知asinA﹣bsinB=4csinC,cosA=﹣,则=( ) A.6
B.5
C.4
D.3
12.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为( ) A.
+y=1
2
B.+=1
C.+=1 D.+=1
二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)曲线y=3(x+x)e在点(0,0)处的切线方程为 .
14.(5分)记Sn为等比数列{an}的前n项和.若a1=1,S3=,则S4= . 15.(5分)函数f(x)=sin(2x+
)﹣3cosx的最小值为 .
2
x16.(5分)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的
.
.
距离均为,那么P到平面ABC的距离为 .
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。
17.(12分)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:
男顾客 女顾客 满意 40 30 不满意 10 20 (1)分别估计男、女顾客对该商场服务满意的概率;
(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异? 附:K=
2
.
2P(K≥k) k 0.050 3.841 0.010 6.635 0.001 10.828 18.(12分)记Sn为等差数列{an}的前n项和.已知S9=﹣a5. (1)若a3=4,求{an}的通项公式;
(2)若a1>0,求使得Sn≥an的n的取值范围.
19.(12分)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,
E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN∥平面C1DE; (2)求点C到平面C1DE的距离.
.
.
20.(12分)已知函数f(x)=2sinx﹣xcosx﹣x,f′(x)为f(x)的导数. (1)证明:f′(x)在区间(0,π)存在唯一零点; (2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.
21.(12分)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.
(1)若A在直线x+y=0上,求⊙M的半径;
(2)是否存在定点P,使得当A运动时,|MA|﹣|MP|为定值?并说明理由.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程](10分)
22.(10分)在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐
标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθ+
ρsinθ+11=0.
(1)求C和l的直角坐标方程; (2)求C上的点到l距离的最小值. [选修4-5:不等式选讲](10分)
23.已知a,b,c为正数,且满足abc=1.证明: (1)++≤a+b+c;
(2)(a+b)+(b+c)+(c+a)≥24.
3
3
3
2
2
2
.