好文档 - 专业文书写作范文服务资料分享网站

全国研究生数学建模竞赛论文--范例解析

天下 分享 时间: 加入收藏 我要投稿 点赞

全国第五届研究生数学建模竞赛

题 目 货运列车的编组调度问题

摘 要

货运列车的编组调度问题是铁路运输系统的关键问题之一。合理地设计编组调度方案对于提高铁路运输能力和运行效率具有十分重要的意义,是关乎我国铁路系统能否又好又快发展的全局性问题。针对货运列车的编组调度问题,在深入研究编组站中到达列车的转发、解体及新车编发等规则和要求的基础上,对所提供的数据进行了分析和处理,建立了各问题相应的数学模型,制订了相应的编组调度方案:

针对问题一,详细探讨了白、夜班中所有车辆在编组站的滞留时间,包括解体等待时间、解体时间、编组时间、出发等待时间以及转发时间等等;求出了所有车辆在编组站的滞留时间之和,并用其除以所有车辆的总数,即得到每班中时的优化模型;模型以每班的最小中时为目标函数,其约束条件包括出发列车的总重量、总长度、每辆车的中时约束等等;最后利用遗传算法和Matlab遗传算法工具箱,计算出了白班和夜班的最小中时,并给出了详细的列车解体计划和编组方案。

针对问题二,优先考虑了发往S1的货物、军用货物及救灾货物等的运输问题;优先安排了含有专供货物和救灾货物车辆数较多的列车,使其尽快解体、编组和发车,以减少其等待时间。建模时,在问题一模型的基础上添加了专供货物和救灾货物车辆的中时约束,并利用遗传算法计算出了每班的最小中时,制订了列车解体计划和编组方案。

针对问题三,由于所提供的信息具有动态性,所以在解编列车时,要对后续车辆和现存车辆的具体情况同时进行分析才能作出合理决策。在考虑相邻时段递推关系的基础上,以每班的最小中时和发出车辆最大数目为目标函数,建立了一个多目标多阶段动态规划模型,并利用神经网络方法和Matlab软件计算出了每班的最小中时和发出车辆的最大数目,制订了列车解体计划和编组方案。

针对问题四,首先根据已知条件处理了所给的数据,然后在模型一的基础上建立了相应的模型,并计算出了相应各班的中时,给出了相应的调度方案。

针对问题五,根据编组方案计算出了一昼夜该编组站能编组的最多车辆数和相应各班的中时,并根据结果得出了该编组站可以提高资源利用率和运行效率的结论。

最后提出了编组方案的改进方法,并对铁路运输问题提出了自己的建议和意见。

关键词:解体;编组;遗传算法;动态规划模型

参赛队号 参赛密码 (由组委会填写) 1. 问题重述

货运列车编组调度的科学性和合理性直接影响着货物运输的效率。某货运车站担负着国内东西和南北两大铁路干线上货运列车的编组调度任务,是我国沟通南北、连接东西的交通要道,素有铁路“心脏”之称。每天最多有400多列货车(无客车)在这里进出,有20000多辆(节)车辆在这里集结和解编。该站南北长6000余米、东西宽800余米,占地5.3平方公里(如附件1图),采用双向纵列式三级六场机械化驼峰编组站站型,即上行线方向(发往北、西)和下行线方向(发往南、东),上行线和下行线又分别包含有到达场、编组场和出发场。共有l51条站线,全长390多公里,其下行线的到达场12条,记为XD(k)(k =1,2,…,12);编组场36条,记为XB(k)(k =1,2,…,36);出发场24条,记为XF(k)(k =1,2,…,24)。上行线的到达场12条,记为SD(k)(k =1,2,…,12);编组场36条,记为SB(k) (k =1,2,…,36);出发场23条,记为SF(k)(k =1,2,…,23)。另外下行线和上行线各有一个转发场(用于下行线与上行线之间的转换场地),各有4条线路,分别记为XZF(k)和SZF(k)(k =1,2,3,4)。从每个到达场都有两条线路经驼峰区与相应的编组场相连,场区示意图如图1所示。注意:在这个问题里不考虑该车站装卸场的装卸作业。

实际中,货运列车编组的流程是:对于从上行线和下行线的各方向经过该站的每一列货运列车分别驶入各自的到达场内停靠,然后根据每一辆车的货物去向通过驼峰解体,分别向各自的编组场不同轨道线集结,从而编组成一列新的发往某一个方向的列车,最后转往上行线或下行线的出发场待发。编组工作每天分为白班和夜班两个班次,从早晨6:00点到18:00点为白班,18:00点到第二天早晨6:00点为夜班。每班各分为四个时段,白班:6:00~8:00,8:00~12:00,12:00~15:00,15:00~18:00;夜班:18:00~20:00,20:00~24:00,0:00~3:00,3:00~6:00。铁路管理部门希望车站的编组调度工作快速高效,衡量编组调度效率的主要指标是“中时”(从列车进入到达场至重新编组成新的列车驶入出发场后,其每辆车的平均时间,即每辆车在车站的平均中转停留时间)。每个时段都有相应的任务指标要求,一般要求列车在到达场停留时间最多不得超两个时段,中时最多不得超过8小时。

根据实际作业情况可知,机车将待解体的列车从到达场推到驼峰轨道线上,缓慢运动中进行解体操作,解体后的车辆靠惯性(无动力)运行至编组场轨道上。每组车辆(一辆或同方向的若干辆)从到达场经驼峰解体到编组场集结平均大约需要10分钟;从编组场牵引一列车到出发场大约需要5分钟;无调车(无需编组的列车,含专列)直接经过转发场做必要的技术处理后进入出发场大约需要15分钟;由上(下)行线编组场经转发场到达下(上)行线出发场一次约需20分钟。编组调度规程规定每辆重车不超过80T(含车自重20T),一般要求每列车总重量不超过4800T,总长最多不超过70辆。列车编组的各操作环节都是定班、定点、定人作业,自动控制流程。一般新编列车的车辆均发往同一方向,按到站次序由远至近依次排列,同一到站的车辆相连。通常情况下,货物列车的相关信息(列车车次、列车到站、编组车辆数、列车重量、列车长度等)有具体的预确报制度(附件3),但确切的信息在列车到站时方能确定。

附件2给出某一天24小时内经过该车站货运列车的相关数据,请根据实际情况和相关数据依次研究解决下列问题:

(1)试设计快速自动实现车辆编组调度方案的优化模型或算法,并给出附件2中车辆可行的编组方案(包括解体程序、轨道编号、车辆数量、集结程序、新列车的组成等),主要使每班的中时尽量地少。

2

(2)发往S1的货物和军用物资都为特别专供货物,需要保障优先运送。如果要求装载这类物资的车辆必须在2小时内发出(即中时不超过2小时);同时发往地震灾区(向西方向某些车站)的救灾货物车辆要求中时不超过1小时,请你们给出相应的调度方案,并计算相应每班的中时。

(3)如果调度室在列车到达前两小时能够获取列车的相关信息,请利用这些信息制定可行的列车编组调度方案,使每班的中时尽量少,发出的车辆尽量多。

(4)如果因自然灾害导致S3以南的铁路中断,需要将有关的车辆转向东方向经E4向南绕行,请你们给出相应的调度方案,并计算相应每班的中时。

(5)假设编组完成的列车都能及时发出,按照你们的编组调度方案分析研究该编组站一天24小时最多能编组完成多少车辆,相应每班的中时是多少?即根据所建立模型进一步分析该编组站能否再提高资源的利用率和运行效率。

(6)目前我国的铁路资源紧张,需大于求,如何改进编组调度方案,才使得现有的铁路设施有更高的利用率,产生更高效益,谈谈建议和意见。

2.基本假设

本假设适用于各个问题:

(1)假设有足够的驼峰机车供列车解体使用;

(2)编组场到出发场可以认为有多条,能够满足需求。即多辆列车编组完毕后进入出发场时不会发生冲突;

(3)所有时间均以分钟为单位。

3.通用符号说明

序号 1 2 3 4 5 6 7 8 9

符号 k 符号说明 双向编组站的上、下行系统编号;其中k?0表示上行系统,k?1表示下行系统 表示车辆类型,其中w?0表示为空车,w?1表示为重车 表示列车用途分类;其中m?0表示为普通车,m?1表示为军用车,m?2表示为救灾车 各站点标识,n??E1,E2w m n f E8;S1S6;W1W7;N1N5? 出发列车的出发方向f??E,S,W,N?对应的f取值为1,2,3,4 无调车e所含的车辆数 k系统到达列车的集合 qe Pk i 到达列车的编号,i??Pk?0?Pk?1? k系统f方向的出发方向的集合 3

Fkf

全国研究生数学建模竞赛论文--范例解析

全国第五届研究生数学建模竞赛题目货运列车的编组调度问题摘要货运列车的编组调度问题是铁路运输系统的关键问题之一。合理地设计编组调度方案对于提高铁路运输能力和运行效率具有十分重要的意义,是关乎我国铁路系统能否又好又快发展的全局性问题。针对货运列车的编组调度问题,在深入研究编组站中到达列车的转发、解体及新
推荐度:
点击下载文档文档为doc格式
89q6551vem0cqsi0v0jd0weks4q8c700ntf
领取福利

微信扫码领取福利

微信扫码分享