答 因为系统用到了仪表, 因此与仪表的精度有关, 同时与出水阀开度的大小有关。并和放大系数 K、时间常数 T 以及纯滞后时间有关。另外,也会受实验室电压的波动与测试软件的影响。
3、如果采用中水箱做实验,其响应曲线与上水箱的曲线有什么异同?并分析差异原因。
答:若采用中水箱做实验,它的响应曲线要比上水箱变化的慢。原因: 因为中水箱的回路比上水箱的回路要长, 上升相同的液位高度中水箱要更长的时间。
实验二、上水箱液位PID整定实验
一、 实验目的
1、了解单容液位定值控制系统的结构与组成。
2、掌握单容液位定值控制系统调节器参数的整定和投运方法。 3、研究调节器相关参数的变化对系统静、动态性能的影响。 4、了解P、PI、PD 和PID 四种调节器分别对液位控制的作用。
5、掌握在FCS 控制系统中现场检测信号的传送和控制信号的网络传输路径。
二、 实验设备
1. THJ-FCS 型高级过程控制系统实验装置。 2. 计算机及相关软件。 3. 万用电表一只。
三、 实验原理
图1 上水箱单容液位定值控制系统
(a) 结构图 (b)方框图
本实验系统结构图和方框图如图3-6 所示。被控量为上水箱(也可采用中水箱或下水箱)的液位高度,实验要求它的液位稳定在给定值。将压力传感器LT1 检测到的上水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制气动调节阀的开度,以达到控水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI 或PID 控制。
四、 实验内容与步骤
实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-6全开,将上水箱出水阀门F1-9 开至适当开度,其余阀门均关闭。
1、接通控制柜和控制台电源电源,并启动磁力驱动泵和空压机。 2、打开作上位控制的PC 机,,进入的实验主界面。
3、鼠标左键点击实验项目“上水箱液位PID 整定实验”,系统进入正常的测试状态。
4、在上位机监控界面中点击“手动”,并将设定值和输出值设置为一个合适的值,此操作可通过设定值或输出值旁边相应的滚动条或输出输入框来实现。 5、启动磁力驱动泵,磁力驱动泵上电打水,适当增加/减少输出量,使上水箱的液位平衡于设定值。 6、按本章第一节中的经验法或动态特性参数法整定PI 调节器的参数,并按整定后的PI 参数进行调节器参数设置。
7、待液位稳定于给定值后,将调节器切换到“自动”控制状态,待液位平衡后,通过以下几种方式加干扰:(1) 突增(或突减)设定值的大小,使其有一个正(或负)阶跃增量的变化;(此法推荐,后面两种仅供参考)(2) 将气动调节阀的旁路阀F1-3 或F1-4(同电磁阀)开至适当开度;(3) 将下水箱进水阀F1-8 开至适当开度;(改变负载)
以上几种干扰均要求扰动量为控制量的5%~15%,干扰过大可 能造成水箱中水溢出或系统不稳定。加入干扰后,水箱的液位便离开原平衡状态,经过一段调节时间后,水箱液位稳定至新的设定值(采用后面两种干扰方法仍稳定在原设定值),观察计算机记录此时的设定值、输出值和参数。
8、分别适量改变调节器的P 及I 参数,重复步骤7,通过实验界面下边的按钮切换观察计算机记录不同控制规律下系统的阶跃响应曲线。
9、分别用P、PD、PID 三种控制规律重复步骤4~8,通过实验界面下边的按钮切换观察计算机记录不同控制规律下系统的阶跃响应曲线。
五、 实验结果与分析
1.单容水箱液位定值控制实验的结构框图
2. 实验方法确定调节器的相关参数,整定过程如下
通过经验法来确定PID参数,现设置比例系数K,通过观察响应曲线的变化,来确定是否需要添加积分环节I;如果误差超过要求范围,则需要添加积分环节I来消除余差;继续观察响应曲线若其动态性能不能达到要求则添加微分环节D,用以满足系统动静态参数要求。
3. 实验曲线图及相关分析
在系统稳定之后给以阶跃扰动,由于PID控制器的调节作用,系统趋于一个新的稳定状态,根据曲线图可以看出,该系统能够仍存在误差,但是误差在可允许的范围内,所以实验曲线图还是可以作为研究PID控制器作用的分析图。 4. 不同PID参数对系统产生的影响
P:增大比例系数K,会使系统的振荡加剧,稳定性变差,但可以减小系统的稳定误差,加快系统的响应速度。
PI:加入积分环节的作用是消除余差,但积分环节会引起相角滞后,系统的动态性能恶化,随着积分作用的增强,控制器的控制作用增强,系统的稳定性逐渐减弱。
PID:加入微分环节作用是补偿对象滞后,使系统的稳定性得到改善,提高了响应速度,兼顾了动静态的控制要求。
5. 分析P、PI、PD、PID,四种不同的控制方式对系统的影响
P:增大比例系数K,会使系统的振荡加剧,稳定性变差,但可以减小系统的稳定误差,加快系统的响应速度。
PI:加入积分环节的作用是消除余差,但积分环节会引起相角滞后,系统的动态性能恶化,随着积分作用的增强,控制器的控制作用增强,系统的稳定性逐渐减弱。 PD:微分作用通过提供超前作用使得被控过程趋于稳定,同时也减小了过渡过程的时间,改善了被控量动态响应的品质。
PID:加入微分环节作用是补偿对象滞后,使系统的稳定性得到改善,提高了响应速度,兼顾了动静态的控制要求。
六、 思考题
1、 如果采用下水箱做实验,其响应曲线与中水箱的曲线有什么异同?并分析差异原因。
答 采用下水箱实验,其滞后时间会变短。
因为水的回路会变得更短,所以曲线会上升的更快。
2、 改变比例度δ和积分时间TI 对系统的性能产生什么影响?
答 (1)改变比力度使得调节器的参数改变,这可能让系统的稳定性受影响。增大比例度会使其超调量增大,使系统变得不稳定。