ºÃÎĵµ - רҵÎÄÊéд×÷·¶ÎÄ·þÎñ×ÊÁÏ·ÖÏíÍøÕ¾

³õÖÐÊýѧ֪ʶµã´óÈ«ÍêÕû°æ

ÓÉ ÌìÏ ·ÖÏí ʱ¼ä£º ¼ÓÈëÊÕ²Ø ÎÒҪͶ¸å µãÔÞ

µÚÒ»²á µÚÒ»Õ ÓÐÀíÊý ÕýÊýºÍ¸ºÊý

ÒÔǰѧ¹ýµÄ 0 ÒÔÍâµÄÊýÇ°Ãæ¼ÓÉϸººÅ¡°£­¡±µÄÊé½Ð×ö¸ºÊý¡£ ÒÔǰѧ¹ýµÄ0ÒÔÍâµÄÊý½Ð×öÕýÊý¡£

Êý0¼È²»ÊÇÕýÊýÒ²²»ÊǸºÊý£¬0ÊÇÕýÊýÓ븺ÊýµÄ·Ö½ç¡£ ÔÚͬһ¸öÎÊÌâÖУ¬·Ö±ðÓÃÕýÊýºÍ¸ºÊý±íʾµÄÁ¿¾ßÓÐÏà·´µÄÒâÒå ÓÐÀíÊý

1.2.1 ÓÐÀíÊý

ÕýÕûÊý¡¢ 0¡¢¸ºÕûÊýͳ³ÆÕûÊý£¬Õý·ÖÊýºÍ¸º·ÖÊýͳ³Æ·ÖÊý¡£ ÕûÊýºÍ·ÖÊýͳ³ÆÓÐÀíÊý¡£

1.2.2 ÊýÖá

¹æ¶¨ÁËÔ­µã¡¢Õý·½Ïò¡¢µ¥Î»³¤¶ÈµÄÖ±Ïß½Ð×öÊýÖá¡£ ÊýÖáµÄ×÷ÓãºËùÓеÄÓÐÀíÊý¶¼¿ÉÒÔÓÃÊýÖáÉϵĵãÀ´±í´ï¡£ ×¢ÒâÊÂÏ¢ÅÊýÖáµÄÔ­µã¡¢Õý·½Ïò¡¢µ¥Î»³¤¶ÈÈýÒªËØ£¬È±Ò»²»¿É¡£

¢Æͬһ¸ùÊýÖᣬµ¥Î»³¤¶È²»Äܸı䡣

Ò»°ãµØ£¬ÉèÊÇÒ»¸öÕýÊý£¬ÔòÊýÖáÉϱíʾ a µÄµãÔÚÔ­µãµÄÓұߣ¬ÓëÔ­µãµÄ¾àÀëÊÇ a ¸öµ¥Î»³¤¶È£»±íʾÊý£­ a µÄµãÔÚÔ­µãµÄ×ó±ß£¬ÓëÔ­µãµÄ¾àÀëÊÇ a ¸öµ¥Î»³¤¶È¡£

1.2.3 Ïà·´Êý

Ö»ÓзûºÅ²»Í¬µÄÁ½¸öÊý½Ð×ö»¥ÎªÏà·´Êý¡£ ÊýÖáÉϱíʾÏà·´ÊýµÄÁ½¸öµã¹ØÓÚÔ­µã¶Ô³Æ¡£

ÔÚÈÎÒâÒ»¸öÊýÇ°ÃæÌíÉÏ¡°£­¡±ºÅ£¬ÐµÄÊý¾Í±íʾԭÊýµÄÏà·´Êý¡£

°ãµØ£¬ÊýÖáÉϱíʾÊý a µÄµãÓëÔ­µãµÄ¾àÀë½Ð×öÊý a µÄ¾ø¶ÔÖµ

Ò»¸öÕýÊýµÄ¾ø¶ÔÖµÊÇËüµÄ±¾Éí£» Ò»¸ö¸ºÊýµÄ¾ø¶ÔÖµÊÇËüµÄÏà·´Êý£» 0 µÄ¾ø¶ÔÖµÊÇ 0¡£ ÔÚÊýÖáÉϱíʾÓÐÀíÊý£¬ ËüÃÇ´Ó×óµ½ÓÒµÄ˳Ðò£¬ ¾ÍÊÇ´ÓСµ½´óµÄ˳Ðò£¬ ¼´×ó±ßµÄÊýС ÓÚÓұߵÄÊý¡£

±È½ÏÓÐÀíÊýµÄ´óС£º¢ÅÕýÊý´óÓÚ 0, 0´óÓÚ¸ºÊý£¬ÕýÊý´óÓÚ¸ºÊý¡£

¢ÆÁ½¸ö¸ºÊý£¬¾ø¶ÔÖµ´óµÄ·´¶øС¡£

ÓÐÀíÊýµÄ¼Ó¼õ·¨

1.3.1 ÓÐÀíÊýµÄ¼Ó·¨

ÓÐÀíÊýµÄ¼Ó·¨·¨Ôò£º

¢ÅͬºÅÁ½ÊýÏà¼Ó£¬È¡ÏàͬµÄ·ûºÅ£¬²¢°Ñ¾ø¶ÔÖµÏà¼Ó¡£

¢Æ¾ø¶ÔÖµ²»ÏàµÈµÄ¶öÒìºÅÁ½ÊýÏà¼Ó£¬ È¡¾ø¶ÔÖµ½Ï´óµÄ¼ÓÊýµÄ·ûºÅ£¬ ²¢ÓýϴóµÄ¾ø¶Ô Öµ¼õÈ¥½ÏСµÄ¾ø¶ÔÖµ¡£»¥ÎªÏà·´ÊýµÄÁ½¸öÊýÏà¼ÓµÃ 0¡£

¢ÇÒ»¸öÊýͬ 0 Ïà¼Ó£¬ÈÔµÃÕâ¸öÊý¡£ Á½¸öÊýÏà¼Ó£¬½»»»¼ÓÊýµÄλÖ㬺Ͳ»±ä¡£

¼Ó·¨½»»»ÂÉ£ºa + b = b + a Èý¸öÊýÏà¼Ó£¬ÏÈ°ÑÇ°ÃæÁ½¸öÊýÏà¼Ó£¬»òÕßÏȰѺóÁ½¸öÊýÏà¼Ó£¬ºÍ²»±ä¡£

¼Ó·¨½áºÏÂÉ£º(a + b) + c = a + (b + c)

1.3.2 ÓÐÀíÊýµÄ¼õ·¨

ÓÐÀíÊýµÄ¼õ·¨¿ÉÒÔת»¯Îª¼Ó·¨À´½øÐС£ ÓÐÀíÊý¼õ·¨·¨Ôò£º

¼õÈ¥Ò»¸öÊý£¬µÈÓÚ¼ÓÕâ¸öÊýµÄÏà·´Êý¡£

a ¡ª b = a + (¡ª b)

ÓÐÀíÊýµÄ³Ë³ý·¨

1.4.1 ÓÐÀíÊýµÄ³Ë·¨

ÓÐÀíÊý³Ë·¨·¨Ôò£º

Á½ÊýÏà³Ë£¬Í¬ºÅµÃÕý£¬ÒìºÅµÃ¸º£¬²¢°Ñ¾ø¶ÔÖµÏà³Ë¡£ ÈκÎÊýͬ 0 Ïà³Ë£¬¶¼µÃ 0¡£ ³Ë»ýÊÇ 1 µÄÁ½¸öÊý»¥Îªµ¹Êý¡£

¼¸¸ö²»ÊÇ 0 µÄÊýÏà³Ë£¬¸ºÒòÊýµÄ¸öÊýÊÇżÊýʱ£¬»ýÊÇÕýÊý£»¸ºÒòÊýµÄ¸öÊýÊÇÆæÊýʱ£¬ »ýÊǸºÊý¡£

Á½¸öÊýÏà³Ë£¬½»»»ÒòÊýµÄλÖ㬻ýÏàµÈ¡£

ab = ba

Èý¸öÊýÏà³Ë£¬ÏÈ°ÑÇ°Á½¸öÊýÏà³Ë£¬»òÕßÏȰѺóÁ½¸öÊýÏà³Ë£¬»ýÏàµÈ¡£ (ab) c=a (be)

Ò»¸öÊýͬÁ½¸öÊýµÄºÍÏà³Ë£¬µÈÓÚ°ÑÕâ¸öÊý·Ö±ðͬÕâÁ½¸öÊýÏà³Ë£¬ÔÙ°Ñ»ýÏà¼Ó¡£

a (b + e)= ab + ae

Êý×ÖÓë×ÖĸÏà³ËµÄÊéд¹æ·¶£º

¢ÅÊý×ÖÓë×ÖĸÏà³Ë£¬³ËºÅҪʡÂÔ£¬»òÓá°¡±

¢ÆÊý×ÖÓë×ÖĸÏà³Ë£¬µ±ÏµÊýÊÇ1»ò¡ª1ʱ£¬1ҪʡÂÔ²»Ð´¡£ ¢Ç´ø·ÖÊýÓë×ÖĸÏà³Ë£¬´ø·ÖÊýÓ¦µ±»¯³É¼Ù·ÖÊý¡£

ÓÃ×Öĸx±íʾÈÎÒâÒ»¸öÓÐÀíÊý£¬2ÓëxµÄ³Ë»ý¼ÇΪ2x£¬3ÓëxµÄ³Ë»ý¼ÇΪ3x£¬Ôò ʽ×Ó 2x£«

3x ÊÇ 2x Óë 3x µÄºÍ£¬ 2x Óë 3x ½Ð×öÕâ¸öʽ×ÓµÄÏ 2 ºÍ 3 ·Ö±ðÊÇ×ÅÁ½ÏîµÄϵ Êý¡£

°ãµØ£¬ºÏ²¢º¬ÓÐÏàͬ×ÖĸÒòÊýµÄʽ×Óʱ£¬Ö»Ð轫ËüÃǵÄϵÊýºÏ²¢£¬ËùµÃ½á¹û×÷Ϊ

ϵÊý£¬ÔÙ³Ë×ÖĸÒòÊý£¬¼´

ax + bx =( a + b) x

ÉÏʽÖÐxÊÇ×ÖĸÒòÊý£¬aÓëb·Ö±ðÊÇaxÓëbxÕâÁ½ÏîµÄϵÊý¡£ È¥À¨ºÅ·¨Ôò£º

À¨ºÅÇ°ÊÇ¡° + ¡±£¬°ÑÀ¨ºÅºÍÀ¨ºÅÇ°µÄ¡° + ¡±È¥µô£¬À¨ºÅÀï¸÷Ï²»¸Ä±ä·ûºÅ¡£ À¨ºÅÇ°ÊÇ¡°-¡±£¬°ÑÀ¨ºÅºÍÀ¨ºÅÇ°µÄ¡°-¡±È¥µô£¬À¨ºÅÀï¸÷Ï¸Ä±ä·ûºÅ¡£

À¨ºÅÍâµÄÒòÊýÊÇÕýÊý£¬È¥À¨ºÅºóʽ×Ó¸÷ÏîµÄ·ûºÅÓëÔ­À¨ºÅÄÚʽ×ÓÏàÓ¦¸÷ÏîµÄ·ûºÅÏà ͬ£»À¨ºÅÍâµÄÒòÊýÊǸºÊý£¬È¥À¨ºÅºóʽ×Ó¸÷ÏîµÄ·ûºÅÓëÔ­À¨ºÅÄÚʽ×ÓÏàÓ¦¸÷ÏîµÄ·ûºÅÏà ·´¡£

142ÓÐÀíÊýµÄ³ý·¨

ÓÐÀíÊý³ý·¨·¨Ôò£º

³ýÒÔÒ»¸ö²»µÈÓÚ0µÄÊý£¬µÈÓÚ³ËÕâ¸öÊýµÄµ¹Êý¡£ 1

aa ? (bºÍ)

b

Á½ÊýÏà³ý£¬Í¬ºÅµÃÕý£¬ÒìºÅµÃ¸º£¬²¢°Ñ¾ø¶ÔÖµÏà³ý¡£0³ýÒÔÈκÎÒ»¸ö²»µÈÓÚ0µÄÊý£¬ ¶¼µÃ

0¡£

ÒòΪÓÐÀíÊýµÄ³ý·¨¿ÉÒÔ»¯Îª³Ë·¨£¬ËùÒÔ¿ÉÒÔÀûÓó˷¨µÄÔËËãÐÔÖʼò»¯ÔËËã¡£ ³Ë³ý»ì ºÏÔËËãÍùÍùÏȽ«³ý·¨»¯³É³Ë·¨£¬È»ºóÈ·¶¨»ýµÄ·ûºÅ£¬×îºóÇó³ö½á¹û¡£ ÓÐÀíÊýµÄ³Ë·½

1.5.1³Ë·½

³õÖÐÊýѧ֪ʶµã´óÈ«ÍêÕû°æ

µÚÒ»²áµÚÒ»ÕÂÓÐÀíÊýÕýÊýºÍ¸ºÊýÒÔǰѧ¹ýµÄ0ÒÔÍâµÄÊýÇ°Ãæ¼ÓÉϸººÅ¡°£­¡±µÄÊé½Ð×ö¸ºÊý¡£ÒÔǰѧ¹ýµÄ0ÒÔÍâµÄÊý½Ð×öÕýÊý¡£Êý0¼È²»ÊÇÕýÊýÒ²²»ÊǸºÊý£¬0ÊÇÕýÊýÓ븺ÊýµÄ·Ö½ç¡£ÔÚͬһ¸öÎÊÌâÖУ¬·Ö±ðÓÃÕýÊýºÍ¸ºÊý±íʾµÄÁ¿¾ßÓÐÏà·´µÄÒâÒåÓÐÀíÊý1.2.1ÓÐÀíÊýÕýÕûÊý¡¢0¡¢¸ºÕûÊýͳ³ÆÕûÊý£¬Õý·ÖÊýºÍ¸º·ÖÊýͳ³Æ·ÖÊý¡£ÕûÊýºÍ
ÍƼö¶È£º
µã»÷ÏÂÔØÎĵµÎĵµÎªdoc¸ñʽ
893vk6q3nl02tjb2ixwe3xy6q955p4014ta
ÁìÈ¡¸£Àû

΢ÐÅɨÂëÁìÈ¡¸£Àû

΢ÐÅɨÂë·ÖÏí