直角三角形的边角关系
∠A的正切tan A=
?A的对边a?
?A的邻边b?A的对边a?
斜边c?A的邻边b?斜边c
∠A的正弦sinA=
∠A的余弦cosA=
30 045 060 0
sina 1 22 22 21 cosa tana 3 23 33 21 23 3 3
cota 3 1 二次函数
一、二次函数的概念
b,c是常数,a?0)的函数,叫做二次函数。 这1.二次函数的概念:一般地,形如y?ax2?bx?c(a,c可以为零.二次函数的定义域是全体实数.里需要强调:和一元二次方程类似,二次项系数a?0,而b,
2. 二次函数y?ax2?bx?c的结构特征:
⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.
b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式
1. 二次函数基本形式:y?ax2的性质:
a 的绝对值越大,抛物线的开口越小。
a的符号 a?0 开口方向 顶点坐标 对称轴 性质 向上 0? ?0,0? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最小值0. x?0时,y随x的增大而减小;x?0时,y随a?0 向下 y轴 x的增大而增大;x?0时,y有最大值0.
2. y?ax2?c的性质: 上加下减。
a的符号 a?0 开口方向 顶点坐标 对称轴 性质 向上 c? ?0,c? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最小值c. x?0时,y随x的增大而减小;x?0时,y随a?0 向下 y轴 x的增大而增大;x?0时,y有最大值c.
3.
y?a?x?h?的性质:
左加右减。
2a的符号 a?0 开口方向 顶点坐标 对称轴 性质 向上 0? ?h,0? ?h,X=h x?h时,y随x的增大而增大;x?h时,y随x的增大而减小;x?h时,y有最小值0. x?h时,y随x的增大而减小;x?h时,y随a?0 向下 X=h x的增大而增大;x?h时,y有最大值0.
4. y?a?x?h??k的性质:
2a的符号 a?0 开口方向 顶点坐标 对称轴 性质 向上 ?h,k? ?h,k? X=h x?h时,y随x的增大而增大;x?h时,y随x的增大而减小;x?h时,y有最小值k. x?h时,y随x的增大而减小;x?h时,y随a?0 向下 X=h x的增大而增大;x?h时,y有最大值k. 三、二次函数图象的平移 1. 平移步骤:
k?; 方法一:⑴ 将抛物线解析式转化成顶点式y?a?x?h??k,确定其顶点坐标?h,2k?处,具体平移方法如下: ⑵ 保持抛物线y?ax2的形状不变,将其顶点平移到?h,y=ax2向上(k>0)【或向下(k<0)】平移|k|个单位y=ax2+k向右(h>0)【或左(h<0)】平移|k|个单位向右(h>0)【或左(h<0)】平移 |k|个单位向上(k>0)【或下(k<0)】平移|k|个单位向右(h>0)【或左(h<0)】平移|k|个单位y=a(x-h)2向上(k>0)【或下(k<0)】平移|k|个单位y=a(x-h)2+k
2. 平移规律
在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:
⑴y?ax2?bx?c沿y轴平移:向上(下)平移m个单位,y?ax2?bx?c变成
y?ax2?bx?c?m(或y?ax2?bx?c?m)
⑵y?ax2?bx?c沿轴平移:向左(右)平移m个单位,y?ax2?bx?c变成
y?a(x?m)2?b(x?m)?c(或y?a(x?m)2?b(x?m)?c)
四、二次函数y?a?x?h??k与y?ax2?bx?c的比较
从解析式上看,y?a?x?h??k与y?ax2?bx?c是两种不同的表达形式,后者通过配方可以得到前者,即b?4ac?b2b4ac?b2?y?a?x???,其中h??,. k?2a?4a2a4a?222五、二次函数y?ax2?bx?c图象的画法
五点绘图法:利用配方法将二次函数y?ax2?bx?c化为顶点式y?a(x?h)2?k,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点?0,c?、以及?0,c?关于对称轴对称的点?2h,c?、与x轴的交点?x1,0?,?x2,0?(若与x轴没有交点,则取两组关于对称轴对称的点).
画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点. 六、二次函数y?ax2?bx?c的性质
?b4ac?b2?b 1. 当a?0时,抛物线开口向上,对称轴为x??,顶点坐标为??,?.
4a?2a?2abbb4ac?b2当x??时,y随x的增大而减小;当x??时,y随x的增大而增大;当x??时,y有最小值.
2a2a2a4a?b4ac?b2?bb 2. 当a?0时,抛物线开口向下,对称轴为x??,顶点坐标为??,.当时,y随x???2a4a2a2a??4ac?b2bb x的增大而增大;当x??时,y随x的增大而减小;当x??时,y有最大值
2a2a4a。
七、二次函数解析式的表示方法
1. 一般式:y?ax2?bx?c(a,b,c为常数,a?0);
2. 顶点式:y?a(x?h)2?k(a,h,k为常数,a?0);
3. 两根式:y?a(x?x1)(x?x2)(a?0,x1,x2是抛物线与x轴两交点的横坐标).
注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即b2?4ac?0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.
八、二次函数的图象与各项系数之间的关系 1. 二次项系数a
二次函数y?ax2?bx?c中,a作为二次项系数,显然a?0.
⑴ 当a?0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大; ⑵ 当a?0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大. 总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小. 2. 一次项系数b
在二次项系数a确定的前提下,b决定了抛物线的对称轴. ⑴ 在a?0的前提下, 当b?0时,?当b?0时,?当b?0时,?b?0,即抛物线的对称轴在y轴左侧; 2ab?0,即抛物线的对称轴就是y轴; 2ab?0,即抛物线对称轴在y轴的右侧. 2a⑵ 在a?0的前提下,结论刚好与上述相反,即 当b?0时,?当b?0时,?当b?0时,?b?0,即抛物线的对称轴在y轴右侧; 2ab?0,即抛物线的对称轴就是y轴; 2ab?0,即抛物线对称轴在y轴的左侧. 2a总结起来,在a确定的前提下,b决定了抛物线对称轴的位置.
ab的符号的判定:对称轴x??b在y轴左边则ab?0,在y轴的右侧则ab?0,概括的说就是“左同2a右异” 总结:
3. 常数项c
⑴ 当c?0时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正; ⑵ 当c?0时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0; ⑶ 当c?0时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负. 总结起来,c决定了抛物线与y轴交点的位置.
b,c都确定,那么这条抛物线就是唯一确定的. 总之,只要a,九、二次函数解析式的确定:
根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况: 1. 已知抛物线上三点的坐标,一般选用一般式;
2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; 3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式; 4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 十、二次函数与一元二次方程:
1. 二次函数与一元二次方程的关系(二次函数与x轴交点情况):
一元二次方程ax2?bx?c?0是二次函数y?ax2?bx?c当函数值y?0时的特殊情况. 图象与x轴的交点个数:
① 当??b2?4ac?0时,图象与x轴交于两点A?x1,0?,B?x2,0?(x1?x2),其中的x1,x2是一元二次方程b2?4ac. ax?bx?c?0?a?0?的两根.这两点间的距离AB?x2?x1?a2② 当??0时,图象与x轴只有一个交点; ③ 当??0时,图象与x轴没有交点.
1' 当a?0时,图象落在x轴的上方,无论x为任何实数,都有y?0;
2'当a?0时,图象落在x轴的下方,无论x为任何实数,都有y?0. 2. 抛物线y?ax2?bx?c的图象与y轴一定相交,交点坐标为(0,c);
3. 二次函数常用解题方法总结:
⑴ 求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;
⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
⑶ 根据图象的位置判断二次函数y?ax2?bx?c中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;
⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.
⑸ 与二次函数有关的还有二次三项式,二次三项式ax2?bx?c(a?0)本身就是所含字母x的二次函数;下面以a?0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
??0 抛物线与x轴有两个交点 ??0二次三项式的值可正、可零、可负 一元二次方程有两个不相等实根 ??0
抛物线与x轴只有一个交点 抛物线与x轴无交点 二次三项式的值为非负 一元二次方程有两个相等的实数根 二次三项式的值恒为正 一元二次方程无实数根.