湖北省武汉市2016年中考数学模拟试卷(一)(解析版)
一.选择题(共10小题,每小题3分,共30分) 1.估计
的值介于( )
B.1与2之间
C.2与3之间
D.3与4之间
A.0与1之间 2.若分式
有意义,则x的取值范围是( )
C.x>5 D.x>﹣5
A.x≠5 B.x≠﹣5
3.计算(a﹣1)2正确的是( )
A.a2﹣a+1 B.a2﹣2a+1 C.a2﹣2a﹣1 D.a2﹣1 4.下列事件是必然事件的是( ) A.抛掷一枚硬币四次,有两次正面朝上 B.打开电视频道,正在播放《十二在线》 C.射击运动员射击一次,命中十环 D.方程x2﹣2x﹣1=0必有实数根 5.下列代数运算正确的是( ) A.x?x6=x6 B.(x2)3=x6
C.(x+2)2=x2+4 D.(2x)3=2x3
6.下列几何体中,主视图相同的是( )
A.①② B.①③ C.①④ D.②④
7.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是( ) A.(2,5) B.(﹣8,5)
C.(﹣8,﹣1) D.(2,﹣1)
8.小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面的统计图:根据图中所给信息,全校喜欢娱乐类节目的学生大约有( )人.
A.1080 B.900 C.600 D.108
9.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是( )
A.(63,32) B.(64,32) C.(63,31) D.(64,31)
10.如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD的延长线上移动时,则△PBD的外接圆的半径的最小值为( )
A.1
B. C. D.
二.填空题(共6小题,每小题3分,共18分) 11.计算:﹣6+4= .
12.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为 .
13.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是 .
14.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数= 度.
15.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为 .
16.b两个数中较小的数记作min{a,b},我们把a、直线y=kx﹣k﹣2(k<0)与函数y=min{x2﹣1、﹣x+1}的图象有且只有2个交点,则k的取值为 .
三.解答题(共8小题,共72分) 17.(8分)解方程:2﹣2(x﹣1)=3x+4.
18.(8分)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.
19.(8分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)
(1)写出D级学生的人数占全班总人数的百分比为 ,C级学生所在的扇形圆心角的度数为 ;
(2)该班学生体育测试成绩的中位数落在等级 内;
(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?
20.(8分)已知:如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数
的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为
(2,m),点B的坐标为(n,﹣2),tan∠BOC=. (1)求该反比例函数和一次函数的解析式;
(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标.
21.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.
(1)求证:AC平分∠DAB;
(2)若sin∠ABC=,求tan∠BDC的值.
22.(10分)为了美化环境,学校准备在如图所示的矩形ABCD空地上迸行绿化,规划在中间的一块四边形MNQP上种花,其余的四块三角形上铺设草坪,要求AM=AN=CP=CQ.已知BC=24米,AB=40米,设AN=x米,种花的面积为y1平方米,草坪面积y2平方米. (1)分别求y1和y2与x之间的函数关系式(不要求写出自变量的取值范围) (2)当AN的长为多少米时种花的面积为440平方米?
(3)若种花每平方米需200元,铺设草坪每平方米需100元现设计要求种花的面积不大于440平方米,那么学校至少需要准备多少元费用.
23.(10分)如图,已知等腰△ABC中,AC=BC,点D、E、F分别是线段AC、BC、AD的中点,连接FE、ED,BF的延长线交ED的延长线于点G,连接GC. (1)求证:EF∥CG; (2)若AC=
AB,求证:AC=CG;
= .
(3)如图2,若CG=EG,则
24.(12分)已知抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴交于A、B两点,若m>1,且点A在点B的左侧,OA:OB=1:3 (1)试确定抛物线的解析式;
(2)直线y=kx﹣3与抛物线交于M、N两点,若△AMN的内心在x轴上,求k的值. (3)设(2)中抛物线与y轴的交点为C,过点C作直线l∥x轴,将抛物线在y轴左侧的部分沿直线l翻折,抛物线的其余部分保持不变,得到一个新图象,请你结合新图象回答:当直线y=x+b与新图象只有一个公共点P(x0,y0)且y0≤7时,求b的取值范围.