制数字信号。
图2-2 温度采样单元
该系统的下位机8255单片机作为控制核心,负责采集现场温度值。温度传感器将温度转换为电压信号,经模/数转换器ADC0809转换成8位数字量,并经8255的P1口进入单片机保存。上位PC机通过串行口与下位机联络,向下位机发送控制命令和接收下位机上传的数据以及进行人机交互。上位机采用VB 6.0进行人机交互界面设计,并利用其MSComm控件实现与下位机简单而高效的串行通信。充分发挥了单片机在实时数据采集和PC机对图形处理、显示以及数据库管理上的优点。使得单片机的应用已不仅仅局限于传统意义上的自动监测或控制,而是形成了以网络为核心的分布式多点系统的发展趋势。 2.2.2 控制温度
单片机是集成了中央处理部件,存储器、定时器和各种输入输出设备等接口
部件。具有集成度高,功能强、速度快、体积小、功耗小、使用方便、价格便宜等优点,在工业生产中,电流、电压、温度、压力流量和开关量都是常用的被控参数。其中,温度控制也越来越重要。在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉中的温度进行检测和控制。采用单片机对温度进行控制方便、简单、灵活。而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。
13
2.2.3 模数转换部分
模数转换是将模拟输入信号转换为N位二进制数字输出信号的技术。采用数字信号处理能够方便地实现各种先进的自适应算法,完成模拟电路无法实现的功能,因此,越来越多的模拟信号处理正在被数字技术所取代。与之相应的是,作为模拟系统和数字系统之间桥梁的模数转换的应用日趋广泛。为了满足市场的需求,各芯片制造公司不断推出性能更加先进的新产品、新技术,令人目不暇接。 2.2.4 模数转换技术
本次设计还涉及到数模转换技术,而模数转换技术包括采样、保持、量化和编码四个过程。
1.采样就是将一个连续变化的模拟信号x(t)转换成时间上离散的采样信号x(n)。根据奈奎斯特采样定理,对于采样信号x(t),如果采样频率fs大于或等于2fmax(fmax为x(t)最高频率成分),则可以无失真地重建恢复原始信号x(t)。实际上,由于模数转换器器件的非线性失真、量化噪声及接收机噪声等因素的影响采样速率一般取fs=2.5fmax。通常采样脉冲的宽度tw是很短的,故采样输出是断续的窄脉冲。
2.要把一个采样输出信号数字化,需要将采样输出所得的瞬时模拟信号保持一段时间,这就是保持过程。
3.量化是将连续幅度的抽样信号转换成离散时间、离散幅度的数字信号,量化的主要问题就是量化误差。假设噪声信号在量化电平中是均匀分布的,则量化噪声均方值与量化间隔和模数转换器的输入阻抗值有关。
4.编码是将量化后的信号编码成二进制代码输出。这些过程有些是合并进行的,例如,采样和保持就利用一个电路连续完成,量化和编码也是在转换过程中同时实现的,且所用时间又是保持时间的一部分。 2.2.5 积分型模数转换器
积分型模数转换器称双斜率或多斜率数据转换器,是应用最为广泛的转换器类型。双斜率转换器包括两个主要部分:一部分电路采样并量化输人电压,产生一个时域间隔或脉冲序列,再由一个计数器将其转换为数字量输出。双斜率转换器由1个带有输人切换开关的模拟积分器、1个比较器和1个计数单元构成。积分器对输入电压在固定的时间间隔内积分,该时间间隔通常对应于内部计数单元的最大计数。时间到达后将计数器复位并将积分器输入连接到反极性(负)参考电压。
14
在这个反极性信号作用下,积分器被“反向积分”直到输出回到零,并使计数器终止,积分器复位。
积分型模数转换器的采样速度和带宽都非常低,但它们的精度可以做得很高,并且抑制高频噪声和固定的低频干扰(如50 Hz或60 Hz)的能力,使其对于嘈杂的工业环境以及不要求高转换速率的应用非常有效。 2.2.6 显示部分
本部分电路主要使用七段数码管和移位寄存器芯片74LS164.单片机通过I2CC总线将要显示的数据信号传送到移位寄存器芯片74LS164寄存,再由移位寄存器控制数码管的显示,从而实现移位寄存点亮数码管显示。由于单片机的时钟频率达到12M,移位寄存器的移位速度相当快,所以我们根本看不到数据是一位一位传输的。从人类视觉的角度看,就仿佛是全部数码管同步显示的一样。
移位寄存器74LS164的引脚如图2-6所示:
图2-12移位寄存器74LS164引脚图
74LS164为串行输入、并行输出移位寄存器,其引脚功能如下: A、B —— 串行输入端; Q0~Q7 —— 并行输出端;
MR —— 清除端,低电平有效;
CLK —— 时钟脉冲输入端,上升沿有效。
多片74LS164串联,能实现多位LED静态显示。每扩展一片164就可增加一位显示。MR接+5V,不清除。
在本系统中使用的移位寄存器74LS164时,是用芯片的贴片封装。贴片封装直接焊接在数码管电路的背面,这样既能实现强大的功能又合理利用电路的空间,
15
而且整个显示电路小巧玲珑,在总安装时方便。采用移位寄存器控制数码管显示出本系统的数据,也是本系统的一个优点。
图2—13 LED 显示电路
16
3 软件设计
3.1主程序流程图
系统的软件部分由主程序流程图、中断子程序流程图、按键流程图和显示流程
图四部分组成。系统的主程序流程图如图4-1,当有信号输入时,主程序启动,根据内部设定的条件逐步运行,达到设计目的。
开 始 初 始 化 处理按键、显示设定值 启动A/D转换 数值处理 显示实际温度 停 止 比较设定温度值和实际温度值 N 是否大于? 加 热 Y
图4-1主程序流程图
3.2 读温度子程序
本文选用AD590传感器,读出温度子程序的主要功能包括初始化,判断AD590
17