2024~2024学年度第二学期开学检测试卷
高二数学2024. 2
注意事项及说明: 本卷考试时间为120分钟,全卷满分为150分.
一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1. 命题“?x∈R,x2+x≥0”的否定是 ··········································································· ( ▲ ) A.?x0∈R,x02+x0≤0 B.?x0∈R,x02+x0<0
C.?x∈R,x2+x≤0 D.?x∈R,x2+x<0
2. 已知一元二次不等式ax2+bx+c≤0的解集为[1,2],则cx2+bx+a≤0的解集为 ···················· ( ▲ )
A.[,1]
12B.[1,2] C.[?2,?1] D.[?1,?]
123. 设x是实数,“x?0”是“
1······································································· ( ▲ ) ?1”的 ·
xA.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
4. 《周髀算经》中一个问题:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立
夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则冬至的日影子长为:() A.9.5尺 B.10.5尺 C. 12.5尺 D. 15.5尺 5. 已知F是抛物线y2?4x的焦点,M,N是该抛物线上两点,MF?NF?6,则MN的中点到准线········································································································ ( ▲ ) 的距离为 ·3
A. B.2 C.3 D.4 2
26. 已知等差数列?an?的首项和公差均不为0,且满足a5?a2?a7,则
A.
13 14B.
12 13C.
11 12a3?a7?a11· ( ▲ ) 的值为·
a2?a8?a101D.
37. 若平面?的一个法向量为?????? ????? 1=(1,0,1),平面??的一个法向量是?2=(?3,1,3),则平面??与??所成的角
·············································································································· ( ▲ ) 等于 ·A.30? 8. 正数a,b满足
B.45?
C.60?
D.90?
19??1,若不等式a+b≥-x2+4x+18-m对任意实数x恒成立,则实数m的取值范ab·············································································································· ( ▲ ) 围是 ·
A.[3,+∞) B.[6,+∞) C.(-∞,3] D.(-∞,6]
二、多选题(本大题共4小题,每小题5分,共20分.在每小题列出的四个选项中,有多个选项是
符合题目要求的,全部选对得5分,部分选对得3分,选错的得0分)
9. 下列判断中正确的是 ·························································································· ( ▲ )
A.在
中,“B?60?”的充要条件是“A,B,C成等差数列”
B.“A>B”是“sinA>sinB”的充要条件 C. “a?b”是“ac2?bc2”的必要不充分条件.
D. 命题“?x?R,x2?x?1?0”的否定为“?x?R,x2?x?1?0”.
10. 大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍
生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,…,则下列说法正确的
················································································································· ( ▲ ) 是 ·
A. 此数列的第20项是200 B. 此数列的第19项是182 C. 此数列偶数项的通项公式为a2n?2n2 D. 此数列的前n项和为Sn?n?(n?1) 11. 如图所示,“嫦娥五号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P变点第二次变轨进入仍以月球球心F为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道Ⅲ绕月飞行,若用
2c1和2c2分别表示椭轨道Ⅰ和Ⅱ的焦距,用2a1和2a2分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子中正确的是 ····························································································· ( ▲ ) A.a1?c1?a2?c2 C.c1a2?a1c2
B.a1?c1?a2?c2 D.
c1c2< a1a2O是坐标原点,12. 设M,N是抛物线x2?4y上的两个不同的点,若直线OM与ON······························································· ( ▲ ) 的斜率之积为?,则下列结论正确的是 ·
A. OM?ON?5 B. 以MN为直径的圆面积的最小值为4π C. 直线MN过抛物线x2?4y的焦点 D. 点O到直线MN的距离不大于1
14三、填空题(本大题共4小题,每小题5分,共20分.)
x213. 过点(3,?1)且与双曲线?y2?1有公共渐近线的双曲线标准方程是 ▲.
314. 在数列?an?中,已知a1?2,an?1?an?2n?1(n?N*),则a15?▲.
15. 在正四棱柱???????????1??1??1??1中,底面边长为2,直线????1与平面??????1所成角的正弦值为3,则正四棱
柱的高为 ▲.
16. 已知f (x)=ln(x2+1),g(x)?()x?m,若对?x1∈[0,3],?x2∈[1,2],使得f(x1) ≥ g(x2),则实数m的
取值范围是 ▲.
121
四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17. (本题满分10分)
设命题p:实数x满足?x?a??x?3a??0?其中a?0?,命题q:实数x满足2?x?3 . (1)若a?1,p、q都为真,求实数x的取值范围;
(2)若q是p的充分不必要条件,求实数a的取值范围.
▲▲▲▲▲
18. (本题满分12分)
设m?R,不等式mx??3m?1?x?2?m?1??0的解集记为集合P.
2(1)若P?x?1?x?2,求m的值; (2)当m?0时,求集合P.
▲▲▲▲▲
19. (本题满分12分)
如图,在正三棱柱ABC?A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点. (1)求异面直线BP与AC1所成角的余弦值; (2)求直线CC1与平面AQC1所成角的正弦值.
▲▲▲▲▲
20. (本题满分12分)
2024年春节前后,一场突如其来的新冠肺炎疫情在全国蔓延.在党中央的坚强领导和统一指挥下,全国人民众志成城.团结一心,掀起了一场疫情防控阻击战.目前,我国疫情防控进入常态化.王兵开办了一家印刷厂.如图,一份矩形宣传单的排版面积(矩形ABCD)为P,它的两边都留有宽为a的空白,顶部和底部都留有宽为2a的空白.
(1)若AB?20cm,BC?30cm,且该宣传单的面积不超过1000cm2,求a的取值范围;
(2)若a?2cm,P?800cm2,则当AB长多少时,才能使纸的用量最少?
▲▲▲▲▲
??