14.?sin?24 15.0
三、解答题
16.解 这是一个分段函数,f(x)在点x?0的左极限和右极限都存在.
1?
x?0x?0x21? lim?f(x)?lim?arctan?
x?0x?0x2 lim?f(x)?lim?arctan?? lim?x?0f(x)?limf(x)
x?0? 故当x?0时,f(x)的极限不存在,点x?0是f(x)的第一类间断点.
x?x?117.解 原式=xlim?lim2???x???2x?11?11?12xx2??2122?2x.
18.解 设f(x)?arcsinx?(1?x). 由于x?0是初等函数lnf(x)的可去间断点,
1x1??lnf(x)?lnlimf(x)?lnlim?arcsinx?(1?x)x? 故 limx?0x?0x?0??1??xarcsinx?lim(1?x)? ?ln?limx?0x?0???? ?ln(0?e)?lne?1.
19.解 首先在x?0时,分别求出函数各表达式的导数,即 当x?0时,f?(x)?(xe?1x)??e?1x?xe?1x?11?2?ex(1?)
xx1 当?1?x?0时,f?(x)??ln(x?1)???1. x?1 然后分别求出在x?0处函数的左导数和右导数,即
??(0)?lim f ?x?01?1 x?1?1x??(0)? f 1lime(1?)?0 x?0?x??(0)? 从而f ??(0),函数在x?0处不可导. f 所以
??11xe(1?) x?0??x f?(x)???1 x?0??x?120.解 y?sin(x?y)
y??cos(x?y)(1?y?)?cos(x?y)?y?cos(x?y) ① y????sin(x?y)(1?y?)?y??cos(x?y)?y???sin(x?y)?(1?y?) ?1?cos(x?y)?y????sin(x?y)(1?y?)2
sin(x?y)(1?y?)2 y????1?cos(x?y) ②
又由①解得y??cos(x?y)
1?cos(x?y)2?cos(x?y)?cos(x?y)?1?1?cos(x?y)??? 代入②得y??1?cos(x?y) ??sin(x?y) 3?1?cos(x?y)?21.解 先出求f(x)的一阶导数:f?(x)?4x3?6x2?4x2(x?) 令
x1?0,x2?3. 2f?(x)?032 即4x2(x?)?0 解得驻点为
32 再求出f(x)的二阶导数f??(x)?12x2?12x?12x(x?1). 当x2?时,f??()?9?0,故f()??32323227是极小值. 16 当x1?0时,f??(0)?0,在(??,0)内,f?(x)?0,在(0,)内
f?(x)?0
32 故 x1?0不是极值点.
总之 曲线f(x)?x4?2x2只有极小值点x?.
x3x3?x?xx(x2?1)?xx??x?22.解 ? 2?2
x?1x?1x2?1x2?1x3xx ? ?2dx??(x?2)dx??xdx??2dx
x?1x?1x?1121d(x2?1)121?x?ln(x2?1)?C ?x??22x?1223223.解 由题设知f(x)?(xlnx)??lnx?x(lnx)??lnx?1 故?x?f(x)dx??x(lnx?1)dx ??xlnxdx??xdx ??lnxdx2?x2
??lnx?x2??x2d(lnx)??x2
11221111 ?lnx?x2??x2dx?x2
22x2111 ?x2lnx??xdx?x2
22211 ?x2lnx?x2?C.
24000k1124.解 ? ???dx?kdx?k?limdx ???1?x2a????a1?x21?x21212
?k?limarctanx0a?k?lim(?arctana)?k?a???a????2
k1dx?
21?x2?11 故 k?? 解得k?.
22? 又 ???025.解 ?
?f?x??2x?6,?f?y?3y2?12 解方程组???2x?6?03y2?12?0得驻点A0(3,2),B0(3,?2)
? 又 ?A?f ??xx??2,B?f ??xy?0,C?f ??yy?6y 对于驻点A0:A??2,B?0,C?6yx?3??12,y?2B2?AC?24?0
? 驻点A0不是极值点.
对于驻点B0:A??2,B?0,C?6yx??3??12
y?2 故 B2?AC??24?0,又A??2?0.
? 函数f(x,y)在B0(3,?2)点取得极大值 f(3,?2)?(?2)3?9?18?24?5?30
26.解 由y?x2与x?y2得两曲线的交点为O(0,0)与A(1,1) x?y2(y?0)的反函数为y?x.
? ??(x2?y)dxdy??1dx?x2122(x?y)dy?D0x?0(xy?1y2)x2x2dx?1?51
?0?(x2?x)?(414??2x?2x)?dx?7 ?(2137x2?4x2?10x5)1330?14027.证 ? ?a0f(x)dx??a?2a0?x??f(x)dx??0??dx
??a20xdx??a?a0???0f(x)dx???dx
?13x3aaa0??0f(x)dx??0dx
?a33?a?a0f(x)dx
故
? ?f(x)dx?a?0aa0a3f(x)dx?
3于是?0aa3f(x)dx?.
3(a?1)28.解 (1)先求函数的定义域为(0,??). (2)求y?和驻点:y??1?lnx,令y??0得驻点x?e. 2x (3)由y?的符号确定函数的单调增减区间及极值. 当0?x?e时,y??1?lnx?0,所以y单调增加; x2 当x?e时,y??0,所以y单调减少.
由极值的第一充分条件可知yx?e?为极大值. (4)求y??并确定y??的符号:
2lnx?3 y???,令y???0得x?e2. 3x31e 当0?x?e时,y???0,曲线y为凸的; 当x?e时,y???0,曲线y为凹的.
3?2 根据拐点的充分条件可知点(e,e)为拐点.
23233232这里的y?和y??的计算是本题的关键,读者在计算时一定
要认真、仔细。
另外建议读者用列表法来分析求解更为简捷,现列表如下:
x (0,e) e (e,e) 32e 32(e,??) 32y? + 0 - - - 0 - + y??