湖南省长沙市2024-2024学年第二次中考模拟考试数学试卷
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是
①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:1.
A.1 B.2 C.1 D.4
2.如图,数轴上的四个点A,B,C,D对应的数为整数,且AB=BC=CD=1,若|a|+|b|=2,则原点的位置可能是( )
A.A或B
B.B或C
C.C或D
D.D或A
3.下列事件中,属于不确定事件的是( )
A.科学实验,前100次实验都失败了,第101次实验会成功 B.投掷一枚骰子,朝上面出现的点数是7点 C.太阳从西边升起来了
D.用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形
?x?3?04.不等式组? 的整数解有( )
?x??2?A.0个 5.计算?A.
B.5个
C.6个
D.无数个
3 725?(?)的正确结果是( ) 773B.- C.1
7D.﹣1
6.如图是一个由5个相同的正方体组成的立体图形,它的三视图是( )
A. B.
C. D.
7.用配方法解下列方程时,配方有错误的是( ) A.x2?2x?99?0化为?x? 1??100
2B.x2?8x?9?0化为?x?4??25
2?7?81
C.2t2?7t?4?0化为?t????4?1622?10?D.3x2?4x?2?0化为?x??? 3?9?28.若等式(-5)□5=–1成立,则□内的运算符号为( ) A.+
B.–
C.×
D.÷
9.将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为( ) A.y=(x﹣2)2+3 B.y=(x﹣2)2﹣3 C.y=(x+2)2+3 D.y=(x+2)2﹣3
?x?1?010.不等式组?的解集是 ( )
x?3?0?A.x>-1 C.-1<x<3
B.x>3 D.x<3
11.如图,将一张三角形纸片ABC的一角折叠,使点A落在?ABC处的A'处,折痕为DE.如果?A??,
?CEA'??,?BDA'??,那么下列式子中正确的是( )
A.??2??? B.????2? C.????? D.??180o????
12.下列等式从左到右的变形,属于因式分解的是 A.8a2b=2a·4ab
B.-ab3-2ab2-ab=-ab(b2+2b) D.4my-2=2(2my-1)
1??x?2-C.4x+8x-4=4x??
x??2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,已知⊙O1与⊙O2相交于A、B两点,延长连心线O1O2交⊙O2于点P,联结PA、PB,若
∠APB=60°,AP=6,那么⊙O2的半径等于________.
14.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_______.
15.已知代数式2x﹣y的值是
1,则代数式﹣6x+3y﹣1的值是_____. 216.已知20n是整数,则正整数n的最小值为___
17.若一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,则是k的值可以是_____.(写出一个即可).
18.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某工程队承担了修建长30米地下通道的任务,由于工作需要,实际施工时每周比原计划多修1米,结果比原计划提前1周完成.求该工程队原计划每周修建多少米?
20.(6分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图. 种类 A B C D E 出行方式 共享单车 步行 公交车 的士 私家车
根据以上信息,回答下列问题:
(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人; (2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;
(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.
21.(6分)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,AB=BD,反比例函数y?k2. ?k?0?在第一象限内的图象经过点D(m,2)和AB边上的点E(n,)
x3(1)求m、n的值和反比例函数的表达式.
(2)将矩形OABC的一角折叠,使点O与点D重合,折痕分别与x轴,y轴正半轴交于点F,G,求线段FG的长.
22.(8分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)
(1)转动转盘一次,求转出的数字是-2的概率;
(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.
23.(8分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.求证:DE是⊙O的切线.求DE的长.
24.(10分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.
请你根据统计图解答下列问题:参加比赛的学生共有____名;在扇形统计图中,m的值为____,表示“D等级”的扇形的圆心角为____度;组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.
25.(10分)如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(﹣3,0)两点,与y轴交于点D(0,3).
(1)求这个抛物线的解析式;
(2)如图②,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为﹣2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;
(3)如图③,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与△AOM相似?若存在,求出点P的坐标;若不存在,请说明理由. 26.(12分)先化简,再求值:(
x?24x1 +2)÷,其中x= x?2x?4x?4x?22