移动通信系统OFDM系统仿真与实现基于MATLAB
OFDM系统仿真与实现
1、 OFDM的应用意义
在近几年以内,无线通信技术正在以前所未有的速度向前发展。由于用户对各种实时多媒体业务需求的增加与互联网技术的迅猛发展,未来的无线通信及技术将会有更高的信息传输速率,为用户提供更大的便利,其网络结构也将发生根本的变化。随着人们对通信数据化、个人化与移动化的需求,OFDM技术在无线接入领域得到了广泛的应用。OFDM就是一种特殊的多载波传输方案,它将数字调制、数字信号处理、多载波传输技术结合在一起,就是目前已知的频谱利用率最高的一种通信系统,具有传输速率快、抗多径干扰能力强的优点。目前,OFDM技术在数字音频广播(DAB)、地面数字视频广播(DVB-T)、无线局域网等领域得到广泛应用。它将就是4G移动通信的核心技术之一。
OFDM广泛用于各种数字传输与通信中,如移动无线FM信道,高比特率数字用户线系统(HDSL),不对称数字用户线系统(ADSL),甚高比特率数字用户线系统HDSL,数字音频广播(DAB)系统,数字视频广播(DVB)与HDTV地面传播系统。1999年,IEEE802、11a通过了一个SGHz的无线局域网标准,其中OFDM调制技术被采用为物理层标准,使得传输速率可以达54MbPs。这样,可提供25MbPs的无线ATM接口与10MbPs的以太网无线帧结构接口,并支持语音、数据、图像业务。这样的速率完全能满足室内、室外的各种应用场合。
OFDM由于技术的成熟性,被选用为下行标准很快就达成了共识。而在上行技术的选择上,由于OFDM的高峰均比(PAPR)使得一些设备商认为会增加终端的功放成本与功率消耗,限制终端的使用时间,一些则认为可以通过滤波,削峰等方法限制峰均比。不过,经过讨论后,最后上行还就是采用了SC-FDMA方式。拥有我国自主知识产权的3G标准一一TD-SCDMA在LTE演进计划中也提出了TD-CDM-OFDM的方案B3G/4G就是ITU提出的目标,并希望在2010年予以实现。B3G/4G的目标就是在高速移动环境下支持高达100Mb/S的下行数据传输速率,在室内与静止环境下支持高达IGb/S的下行数据传输速率。而OFDM技术也将扮演重要的角色。
2、 OFDM的原理研究与分析
2、1 OFDM
的关键技术
(1) 时域与频域同步
OFDM系统对定时与频率偏移敏感,特别就是实际应用中与FDMA、TDMA与CDMA等多址方式结合使用时,时域与频率同步显得尤为重要。
(2) 信道估计
在OFDM系统中,信道估计器的设计主要有两个问题:一就是导频信息的选择,由于信道常常就是衰落信道,需要不断对信道进行跟踪,因此导频信息也必须不
移动通信系统OFDM系统仿真与实现基于MATLAB
断的发送;二就是复杂度较低与导频跟踪能力良好的信道估计器的设计。
(3) 信道编码与交织
为了提高数字通信系统的性能,信道编码与交织就是普遍采用的方法。对于衰落信道衰落中的随机错误,可以采用信道编码;对于衰落信道中的突发错误,可以采用交织技术。
(4) 降低峰值平均功率比
由于OFDM信号在时域上表现为N个正交子载波信号的叠加,当这N个信号恰好均以峰值相加时,OFDM信号也将产生最大峰值,该峰值功率就是平均功率的N倍。尽管峰值功率出现的概率较低,但为了不失真地传输这些高PAPR的OFDM信号,从而导致发送效率极低,接收端对前端放大器以及A/D变换器的线性度要求也很高。因此提出了基于信号畸变技术、信号扰码技术与基于信号空间扩展等降低OFDM系统PAPR的方法。
(5) 自适应技术
在OFDM系统中使用自适应技术,还应考虑频率分组、时间间隔、信道总延迟与信道估计误差等因素,其中信道估计误差对性能的影响较大。
2、2 OFDM的优缺点
OFDM主要有下列一些优点:
(1) OFDM在对抗干扰及衰落的优势:把高速数据流通过串并变换,使得每个子载波上的数据符号持续长度相对增加,可有效对抗信号波形间的干扰ISI,适用于多径信道存在频率选择性,而所有子载波都处于深衰落的概率极小,OFDM系统可通过动态比特分配与动态子信道分配的方法,充分利用信噪比较高的子信道,提高系统性能。
(2) OFDM系统由于子载波之间存在正交性,允许子信道的频谱相互重叠,因此与常规的频分复用相比,OFDM可以最大限度地利用频谱资源。
(3) 各子信道的正交调制与解调可通过离散傅利叶反变换(IDFT)与离散傅利叶变换(DFT)实现。对N很大(N>32)的系统,可以通过快速傅立叶变换(FFT)来实现。基于FFT的系统在计算方面更有效,并且随着大规模集成电路技术与DSP的发展,IFFT与EFT都非常容易实现。
(4) OFDM的开放灵活性:无论从无线数据业务的使用需求,还就是从移动通信系统自身要求,都希望物理层支持非对称高速数据传输,而OFDM系统可以很容易使用不同数量的子载波来实现上下链路中不同的传输速率。
OFDM技术的不足:
由于OFDM系统内存在多个正交子载波,而且其输出信号就是多个子信道的叠加,因此对子信道的正交性有严格要求。而由于无线信道的时变性,还有发射机
移动通信系统OFDM系统仿真与实现基于MATLAB
载波与本地振荡器的频率偏差,所以OFDM易受频率偏差的影响。如果多个子信号的相位一致时,所得到的叠加信号的瞬时功率会远大于信号的功率,出现较大的峰值与均值功率比(PAR),这个比值的增大会降低射频放大器的功率效率,使系统性能恶化。
本文主要研究了OFDM调制解调系统,对噪声信道抗干扰能力的研究以及在实际中的基本应用。利用Matlab进行仿真与性能分析。
2、3 原理及数学描述
2、3、1 OFDM的载波调制
正交频分复用OFDM(OrthogonalFrequencyDivisionMultiplex)就是一种多载波调制方式,通过减小与消除码间串扰的影响来克服信道的频率选择性衰落。它的基本原理就是将信号分割为N个子信号,然后用N个子信号分别调制N个相互正交的子载波。由于子载波的频谱相互重叠,因而可以得到较高的频谱效率。
下图就是OFDM基带信号处理原理图。其中,(a)就是发射机工作原理,(b)就是接收机工作原理。
图2、1 OFDM基带信号处理原理图
2、3、2 OFDM的调制解调原理
OFDM通过把需要发射的数据流分解为若干个并行的数据子流,这样每个数据子流在速率上就会降低很多,然后再进行相关调制,将它们调制到一组总数为N,频率之间的间隔相等,且又两两正交的子载波上。
OFDM的调制可以用离散傅里叶反变化(IDFT)来实现,相应的有在解调端可以用离散傅里叶变换(DFT)来实现。而这两种傅里叶变换都有相应的快速算法,在系统的效率与相应时间上会有所提高。系统的实际应用中一般采用IFFT与FFT技术。
2、3、3串并转换
数据传输的典型形式就是串行数据流,符号被连续传输,每一个数据符号的频谱可占据整个可利用的带宽。但在并行守护据传输系统中,许多符号被同时传输,减少了那些在串行系统中出现的问题。
在OFDM系统中,每个传输符号速率的大小大约在几十bps到几十Kbps之间,所以必须进行串并变换,将输入串行比特流转换为可以传输的OFDM符号。由于调制模式可以自适应调节,所以每个子载波的调制模式就是可变化的,因而每个子载波可传输的比特数也就是可以变化的,所以串并转换需要分配给每个子载波数据段的长度就是不一样的。在接收端执行相反的过程,从各个子载波处来的数据被转换回原始的串行数据。