好文档 - 专业文书写作范文服务资料分享网站

2019-2020中考数学试卷(附答案)

天下 分享 时间: 加入收藏 我要投稿 点赞

(1)m=__________;

(2)直线l与x轴交于点B,直线l与y轴交于点C,求四边形OBEC的面积; (3)如图2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的边PQ在x轴上平移,若矩形MNPQ与直线l或l有交点,直接写出a的取值范围_____________________________

25.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.

(1)这次被调查的同学共有 人;

(2)补全条形统计图,并在图上标明相应的数据;

(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.

【参考答案】***试卷处理标记,请不要删除

一、选择题 1.A 解析:A 【解析】

试题分析:A.﹣2<﹣1,故正确; B.0>﹣1,故本选项错误; C.1>﹣1,故本选项错误; D.2>﹣1,故本选项错误; 故选A.

考点:有理数大小比较.

2.B

解析:B 【解析】 【分析】

由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可. 【详解】

11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数, 故只要知道自己的成绩和中位数就可以知道是否进入决赛了. 故选B. 【点睛】

本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.

3.D

解析:D 【解析】

【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.

x2?2xx2【详解】∵?

x?11?xx2?2x1?x=·2 x?1xx2?2x??x?1?=·2 x?1x==

x?x?2???x?1?·2 x?1x??x?2?x2?x=, x故选D.

∴出现错误是在乙和丁,

【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.

4.A

解析:A

【解析】 【分析】

本题可以根据三棱柱展开图的三类情况分析解答 【详解】

三棱柱的展开图大致可分为三类:1.一个三角在中间,每边上一个长方体,另一个在某长方形另一端.2.三个长方形并排,上下各一个三角形.3.中间一个三角形,其中两条边上有长方形,这两个长方形某一个的另一端有三角形,在这三角形的一条(只有一条,否则拼不上)边有剩下的那个长方形.此题目中图形符合第2种情况 故本题答案应为:A 【点睛】

熟练掌握几何体的展开图是解决本题的关键,有时也可以采用排除法.

5.C

解析:C 【解析】 【分析】

根据同底数幂的乘法运算可判断A;根据同底数幂的除法运算可判断B;根据合并同类项可判断选项C;根据分式的乘方可判断选项D. 【详解】

A、原式=a3,不符合题意; B、原式=a4,不符合题意; C、原式=-a2b,符合题意; D、原式=-故选C. 【点睛】

此题考查了分式的乘除法,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键.

27,不符合题意, 8a6.C

解析:C 【解析】 【详解】

①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=

=﹣1,∴b=2a<0,∵抛

物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确; ②∵抛物线与x轴有2个交点,∴△=b2-4ac>0,∴4ac

④∵x=﹣1时,y>0,∴a﹣b+c>2,所以④正确. 故选C.

7.A

解析:A 【解析】

分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.

详解:换人前6名队员身高的平均数为x=方差为S2=

180?184?188?190?192?194=188,

61?222222180?188???184?188???188?188???190?188???192?188???194?188????6?68=; 3换人后6名队员身高的平均数为x=方差为S2=

180?184?188?190?186?194=187,

61?222222180?187???184?187???188?187???190?187???186?187???194?187????6?59= 36859∵188>187,>,

33∴平均数变小,方差变小, 故选:A.

点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,…xn的平均数为x,

1[(x1-x)2+(x2-x)2+…+(xn-x)2],它反映了一组数据的波动大小,方差n越大,波动性越大,反之也成立.

则方差S2=

8.B

解析:B 【解析】 【分析】

根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解. 【详解】

解:设温度为x℃,

?x?1?x?5?根据题意可知?

x?3???x?8解得3?x?5. 故选:B. 【点睛】

本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.

9.A

解析:A 【解析】 【分析】 【详解】

∵正比例函数y=mx(m≠0),y随x的增大而减小, ∴该正比例函数图象经过第一、三象限,且m<0,

∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴, 综上所述,符合题意的只有A选项, 故选A.

10.D

解析:D 【解析】 【分析】

由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解. 【详解】

根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢; 故选D. 【点睛】

此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.

11.A

解析:A 【解析】

试题分析:根据CD:AD=1:2,AC=35米可得:CD=3米,AD=6米,根据AB=10米,∠D=90°可得:BD=AB2?AD2=8米,则BC=BD-CD=8-3=5米.

考点:直角三角形的勾股定理

12.C

解析:C 【解析】 【分析】 【详解】

2019-2020中考数学试卷(附答案)

(1)m=__________;(2)直线l与x轴交于点B,直线l与y轴交于点C,求四边形OBEC的面积;(3)如图2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的边PQ在x轴上平移,若矩形MNPQ与直线l或l有交点,直接写出a的取值范围_____________________________25.某校学生会发现同学们
推荐度:
点击下载文档文档为doc格式
863ce0tq1i0fvqu4yw276b8ve00zsa00v0r
领取福利

微信扫码领取福利

微信扫码分享