好文档 - 专业文书写作范文服务资料分享网站

2024年江苏高等数学竞赛本1-3参考答案

天下 分享 时间: 加入收藏 我要投稿 点赞

《2024江苏省大学生数学竞赛本1-3试题与评分标准》

一.填空题(每小题4分,共20分)(1)设f?u??arctan

1?u2?lnxdy,??x??,y?f???x??,则1?uxdx4n

3n

x?1

?1/5(本一)(1)设a?0,则lim(1?2

n???

?3?4)=42nn

1

n9(本二)(本三)(本一)(1)lim(1?2

n???

3n2n

?3)=2

1nn(2)??sinx?cos2x?x???

?20

dx?

?/2?2/3ax

(2)设a?0,则limln(1?e)ln(1?)?

axa2

(本二三)(3)?0

??

1

?1?x?22dx??/4(本一)(3)设f(u)?arctan

dy12,?(x)?,y?f(?(x)),则dx1?uxx?1

?1/10(本二三)??0,0,0??3,函数(4)已知函数F?u,v,w?可微,Fu??0,0,0??1,Fv??0,0,0??2,Fwz?f?x,y?由F2x?y?3z,4x2?y2?z2,xyz?0确定,满足f?1,2??0,则(本一)??fx??1,2??

(4)-2.?

+?

0

x

dx?23(1?x)1/4(本二三)(5)设?是区域??x,y?|x

2

?y2?4,0?y?x?的边界曲线,取逆时针方向,则???x?y??3??y?1?eydx??x?y??xyeydy???3?6?.(本一)(5)已知F(u,v)可微,Fu'(0,0)?1,Fv'

(0,0)?2,函数z?f(x,y)由方程F(2x?y?3z,4x2?y2?z2)?0确定,满足f(1,2)?0,则fx'(1,2)?

-6二.解下列两题(每小题5分,共10分)2(1)求极限lim?1?3????2n?3???2n?1??n

?????2?4????2n?2???2n????;(2)求极限x2?xy?y2xlim?y?sinx4???x4?y4??y4?.2

解(1)记a12?32????2n?1?1n?

???2k?122?42????2n?2,因为?2k??2k?2??1?k?N*?,所以0?a1?3?2n?3???2n?1?n?22?3?542?5?762????2n?2?2?2n?1?2n?2?2n?1?2n?2,因为lim2n?1n??

?2n?2?0,应用夹逼准则得limn??an?0.(2)应用不等式的性质得x2?xy?y2?x2?y2?2xy?2?x2?y2?,x4?y4?2x2y2,

0?x2?xy?y2x4?y4?sin?x4?y4

??2?x2?y2?112x2y2?y2?x2,

因为lim?11?xx2?xyy??????y2?x2???0,应用夹逼准则得?y2xlimy????x4?y4?sin?x4?y4??0.二.解下列两题(每小题5分,共10分)?(1)求定积分?

20

(cosx?cos2x)2dx;

(2)求极限xlim

x?y???x2sin(x2?xy?y2

).

y???

?xy?y2(本二三)(本一)(本二)二.解下列两题(每小题5分,共10分)(1)求定积分(本三)?

?20

(cosx?cos2x)2dx;

(2)求极限lim

x?y

sin(x2?xy?y2).22x???x?xy?y

y???

85p7d7sym87f1wl0k4bu3bj0w6iip0013n7
领取福利

微信扫码领取福利

微信扫码分享