好文档 - 专业文书写作范文服务资料分享网站

导数公式大全

天下 分享 时间: 加入收藏 我要投稿 点赞

导数公式大全

1、原函数:y=c(c为常数) 导数: y'=0 2、原函数:y=x^n 导数:y'=nx^(n-1) 3、原函数:y=tanx 导数: y'=1/cos^2x 4、原函数:y=cotx 导数:y'=-1/sin^2x 5、原函数:y=sinx 导数:y'=cosx 6、原函数:y=cosx 导数: y'=-sinx 7、原函数:y=a^x 导数:y'=a^xlna 8、原函数:y=e^x 导数: y'=e^x 9、原函数:y=logax 导数:y'=logae/x 10、原函数:y=lnx 导数:y'=1/x

y=f(x)=c (c为常数),则f'(x)=0

f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方) f(x)=sinx f'(x)=cosx f(x)=cosx f'(x)=-sinx f(x)=tanx f'(x)=sec^2x

f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0) f(x)=e^x f'(x)=e^x

f(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0) f(x)=lnx f'(x)=1/x (x>0) f(x)=tanx f'(x)=1/cos^2 x f(x)=cotx f'(x)=- 1/sin^2 x f(x)=acrsin(x) f'(x)=1/√(1-x^2) f(x)=acrcos(x) f'(x)=-1/√(1-x^2) f(x)=acrtan(x) f'(x)=-1/(1+x^2)

导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df/dx(x0)。

1.y=c(c为常数) y'=0

2.y=x^n y'=nx^(n-1) 3.y=a^x y'=a^xlna

y=e^x y'=e^x 4.y=logax y'=logae/x y=lnx y'=1/x 5.y=sinx y'=cosx 6.y=cosx y'=-sinx 7.y=tanx y'=1/cos^2x 8.y=cotx y'=-1/sin^2x 9.y=arcsinx y'=1/√1-x^2 10.y=arccosx y'=-1/√1-x^2 11.y=arctanx y'=1/1+x^2 12.y=arccotx y'=-1/1+x^2

在推导的过程中有这几个常见的公式需要用到:

1.y=f[g(x)],y'=f'[g(x)]?g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』

2.y=u/v,y'=u'v-uv'/v^2

3.y=f(x)的反函数是x=g(y),则有y'=1/x'

证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。

2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。

3.y=a^x,

⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)

⊿y/⊿x=a^x(a^⊿x-1)/⊿x

如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。

所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β

显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。

把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。

可以知道,当a=e时有y=e^x y'=e^x。

4.y=logax

⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x

⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x

因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有

lim⊿x→0⊿y/⊿x=logae/x。

可以知道,当a=e时有y=lnx y'=1/x。

这时可以进行y=x^n y'=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,

所以y'=e^nlnx?(nlnx)'=x^n?n/x=nx^(n-1)。

5.y=sinx

⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)

⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)

导数公式大全

导数公式大全1、原函数:y=c(c为常数)导数:y'=02、原函数:y=x^n导数:y'=nx^(n-1)3、原函数:y=tanx导数:y'=1/cos^2x4、原函数:y=cotx导数:y'=-1/sin^2x5、原函数:y=sinx导数:y'=cosx6、原函数:y=cosx导数:y'=-sinx7、原函数:y=a^x导数:
推荐度:
点击下载文档文档为doc格式
84x0j1ibm99da6a52gje3fmdy9ulfu00gjg
领取福利

微信扫码领取福利

微信扫码分享