!-
解析:答案为A。这仍然是一个等比数列,前后项的比值为-2。 (三)平方数列
1、完全平方数列: 正序:1,4,9,16,25 逆序:100,81,64,49,36 2、一个数的平方是第二个数。 1)直接得出:2,4,16,( 256 )
解析:前一个数的平方等于第二个数,答案为256。 2)一个数的平方加减一个数等于第二个数:
1,2,5,26,(677) 前一个数的平方加1等于第二个数,答案为677。 3、隐含完全平方数列:
1)通过加减一个常数归成完全平方数列:0,3,8,15,24,( 35 ) 前一个数加1分别得到1,4,9,16,25,分别为1,2,3,4,5的平方,答案35
2)相隔加减,得到一个平方数列: 例:65,35,17,( 3 ),1 A.15 B.13 C.9 D.3
解析:不难感觉到隐含一个平方数列。进一步思考发现规律是:65等于8的平方加1,35等于6的平方减1,17等于4的平方加1,再观察时发现:奇位置数时都是加1,偶位置数时都是减1,所以下一个数应该是2的平方减1等于3,答案是D。
例:1,4,16,49,121,( 169 )。(2005年考题) A.256 B.225 C.196 D.169
解析:从数字中可以看出1的平方,2的平方,4的平方,7的平方,11的平方,正好是1,2,4,7,11.。。。。,可以看出后项减前项正好是1,2,3,4,5,。。。。。。。,从中可以看出应为11+5=16,16的平方是256,所以选A。 例:2,3,10,15,26,( 35 )。(2005年考题) A.29 B.32 C.35 D.37
解析:看数列为2=1的平方+1,3=2的平方减1,10=3的平方加1,15=4
!-
的平方减1,26=5的平方加1,再观察时发现:位置数奇时都是加1,位置数偶
n2?(?1)n时都是减1,因而下一个数应该是6的平方减1=35,前n项代数式为:
所以答案是C.35。 (四)立方数列
立方数列与平方数列类似。 例题1: 1,8,27,64,( 125 )
解析:数列中前四项为1,2,3,4的立方,显然答案为5的立方,为125。 例题2:0,7,26,63 ,( 124 )
解析:前四项分别为1,2,3,4的立方减1,答案为5的立方减1,为124。 例3: -2,-8,0,64,( )。(2006年考题) A.64 B.128 C.156 D 250
解析:从数列中可以看出,-2,-8,0,64都是某一个数的立方关系,-2=(1-3)×13,-8=(2-3)X23,0=(3-3)X33,64=(4-3)X43,前n项代数式为:?n?3??n3,因此最后一项因该为(5-3)×53=250 选D 例4:0,9,26,65,124,( 239 )(2007年考题)
解析:前五项分别为1,2,3,4,5的立方加1或者减1,规律为位置数是偶数的加1,则奇数减1。即:前n项=n+ (-1)。答案为239。 在近几年的考试中,也出现了n次幂的形式
例5:1,32,81,64,25,( 6 ),1。(2006年考题) A.5 B.6 C.10 D.12
解析:逐项拆解容易发现1=16,32=25,81=34,64=43,25=52,则答案已经很明显了,6的1次幂,即6 选B。 (五)、加法数列
数列中前两个数的和等于后面第三个数:n1+n2=n3
例题1: 1,1,2,3,5,( 8 )。 A8 B7 C9 D10
解析:第一项与第二项之和等于第三项,第二项与第三项之和等于第四项,第三项与第四项之和等于第五项,按此规律3 +5=8答案为A。
3n!-
例题2: 4,5,( 9 ),14,23,37 A 6 B 7 C 8 D 9 解析:与例一相同答案为D
例题3: 22,35,56,90,( 145 ) 99年考题 A 162 B 156 C 148 D 145
解析:22 +35-1=56, 35+ 56-1=90 ,56+ 90-1=145,答案为D (六)、减法数列
前两个数的差等于后面第三个数:n1-n2=n3 例题1:6,3,3,( 0 ),3,-3 A 0 B 1 C 2 D 3
解析:6-3=3,3-3=0 ,3-0=3 ,0-3=-3答案是A。(提醒您别忘了:“空缺项在中间,从两边找规律”) (七)、乘法数列
1、前两个数的乘积等于第三个数 例题1:1,2,2,4,8,32,( 256 ) 前两个数的乘积等于第三个数,答案是256。 例题2:2,12,36,80,( ) (2007年考题) A.100 B.125 C.150 D.175
解析:2×1, 3×4 ,4×9,5×16 自然下一项应该为6×25=150 选C,此题还可以变形为:12?2,22?3,32?4,42?5…..,以此类推,得出n2?(n?1) 2、两数相乘的积呈现规律:等差,等比,平方等数列。 例题2:3/2, 2/3, 3/4,1/3,3/8 ( A ) (99年海关考题) A 1/6 B 2/9 C 4/3 D 4/9
解析:3/2×2/3=1 2/3×3/4=1/2 3/4×1/3=1/4 1/3×3/8=1/8 3/8×?=1/16 答案是 A。
(八)、除法数列
与乘法数列相类似,一般也分为如下两种形式: 1、两数相除等于第三数。
2、两数相除的商呈现规律:顺序,等差,等比,平方等。
!-
(九)、质数数列
由质数从小到大的排列:2,3,5,7,11,13,17,19… (十)、循环数列
几个数按一定的次序循环出现的数列。 例:3,4,5,3,4,5,3,4,5,3,4
以上数列只是一些常用的基本数列,考题中的数列是在以上数列基础之上构造而成的,下面我们主要分析以下近几年考题中经常出现的几种数列形式。 1、二级数列
这里所谓的二级数列是指数列中前后两个数的和、差、积或商构成一个我们熟悉的某种数列形式。
例1:2 6 12 20 30 ( 42 )(2002年考题) A.38 B.42 C.48 D.56
解析:后一个数与前个数的差分别为:4,6,8,10这显然是一个等差数列,因而要选的答案与30的差应该是12,所以答案应该是B。 例2:20 22 25 30 37 ( ) (2002年考题) A.39 B.45 C.48 D.51
解析:后一个数与前一个数的差分别为:2,3,5,7这是一个质数数列,因而要选的答案与37的差应该是11,所以答案应该是C。 例3:2 5 11 20 32 ( 47 ) (2002年考题) A.43 B.45 C.47 D.49
解析:后一个数与前一个数的差分别为:3,6,9,12这显然是一个等差数列,因而要 选的答案与32的差应该是15,所以答案应该是C。 例4:4 5 7 1l 19 ( 35 ) (2002年考题) A.27 B.31 C.35 D.41
解析:后一个数与前一个数的差分别为:1,2,4,8这是一个等比数列,因而要 选的答案与19的差应该是16,所以答案应该是C。 例5:3 4 7 16 ( 43 ) (2002年考题) A.23 B.27 C.39 D.43
解析:后一个数与前一个数的差分别为:1,3,9这显然也是一个等比数列,
!-
因而要选的答案与16的差应该是27,所以答案应该是D。 例6:32 27 23 20 18 ( 17 ) (2002年考题) A.14 B.15 C.16 D.17
解析:后一个数与前一个数的差分别为:-5,-4,-3,-2这显然是一个等差数列,因而要 选的答案与18的差应该是-1,所以答案应该是D。 例7:1, 4, 8, 13, 16, 20, ( 25 ) (2003年考题) A.20 B.25 C.27 D.28
解析:后一个数与前一个数的差分别为:3,4,5,3,4这是一个循环数列,因而要 选的答案与20的差应该是5,所以答案应该是B。 例8:1, 3, 7, 15, 31, ( 63 ) (2003年考题) A.61 B.62 C.63 D.64
解析:后一个数与前一个数的差分别为:2,4,8,16这显然是一个等比数列,因而要 选的答案与31的差应该是32,所以答案应该是C。 例9:( 69 ),36,19,10,5,2(2003年考题) A.77 B.69 C.54 D.48
解析:前一个数与后一个数的差分别为:3,5,9,17这个数列中前一个数的2倍减1得后一个数,后面的数应该是17*2-1=33,因而33+36=69答案应该是 B。
例10:1,2,6,15,31,( 56 ) (2003年考题) A.53 B.56 C.62 D.87
解析:后一个数与前一个数的差分别为:1,4,9,16这显然是一个完全平方数列,因而要选的答案与31的差应该是25,所以答案应该是B。 例11:1,3,18,216,( 5184 )
A.1023 B.1892 C.243 D.5184
解析:后一个数与前一个数的比值分别为:3,6,12这显然是一个等比数列,因而要选的答案与216的比值应该是24,所以答案应该是D:216*24=5184。 例12: -2 1 7 16 ( 28 ) 43 A.25 B.28 C.3l D.35
解析:后一个数与前一个数的差值分别为:3,6,9这显然是一个等差数列,