3.2.1 几类不同增长的函数模型二y?logax (a?1) 我们知道,对数函数 ,指nxy?x (n?0)数函数 与幂函数 y?a (a?1)
在区间 上都是增函数。从上述两个例子可以(0,??)看到,这三类函数的增长是有差异的。那么,这种差异的具体情况到底怎样呢? 下面,我们不妨先以y?2, y?x, y?log2x函数为例进行探究。x2 利用计算器或计算机,以一定的步长列出自变量与函数值的对应表(表3-5),并在同一平面直角坐标系内画出三个函数的图象(图3.2-4)。可以看到,虽然它们都是增函数,但它们的增长速度是不同的。y?2y?xx0.20.61.5160.361211.42.6391.961.83.4823.242.24.5954.842.66.0636.763893.410.55611.56x21.1490.04图3.2-420241614121086420-2-4yy=2^x y=x^2以2为底的对数学函数x1234567891011http://www.360doc.com/content/20/0628/08/26387228_920895387.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895399.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895417.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895432.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895449.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895468.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895480.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895504.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895522.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895542.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895558.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895569.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895588.shtml http://www.360doc.com/content/20/0628/08/26387228_920895600.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895614.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895633.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895648.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895660.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895677.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895692.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895707.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895721.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895737.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895750.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895767.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895787.shtml http://www.360doc.com/content/20/0628/08/26387228_920895811.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895820.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895846.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895864.shtml
http://www.360doc.com/content/20/0628/08/26387228_920895877.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895900.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895913.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895930.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895955.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920895971.shtml
http://www.360doc.com/content/20/0628/08/26387228_920895993.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920896014.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920896029.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920896051.shtml
http://www.360doc.com/content/20/0628/08/26387228_920896076.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920896088.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920896104.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920896120.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920896145.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920896158.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920896176.shtml http://www.360doc.com/content/20/0628/08/26387228_920896186.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920896202.shtmlhttp://www.360doc.com/content/20/0628/08/26387228_920896215.shtml http://www.360doc.com/userhome/26387228
http://ggws.360doc.com/