重点突击专题卷(二)
数列
1、 已知等比数列?an?的各项均为正数,前n项和为Sn,若a2?2,S6?S4?6a4,则a5?( )A.4
B.10
C.16
D.32
1,则a1a2?a2a3?...?anan?1?( ) 43232A.16(1?4?n) B.16(1?2?n) C.(1?4?n) D.(1?2?n)
33nπ3、已知数列{an}的通项公式an?sin,则
32、已知?an?是等比数列,a2?2,a5?a1?a2?a4?a5?a7?a8?a10?a11?a13?...?a28?a29?( )
A.0 B.3 C.?3 1?an,则a2013等于( ) 1?anD.3 24、在数列{an}中,a1??2,an?1?A.?2
1B.?
3C.
1 2D.3
?1?5、已知数列?an?中,a3?2,a7?1.若??为等差数列,则a9?( )
?an?A.
1 2B.
5 4C.
4 5D.?4 56、设等差数列?an?的前n项和为Sn,若a3?a6?23,S5?35,则数列?an?的公差为( ) A.2
B.3
C.6
D.9
7、在等比数列?an?中,a4,a8是关于x的方程x2?10x?4?0的两个实根,则a2a6a10?( ) A.8
B.?8
C.4
D.8或?8
8、已知等比数列?an?的前n项和Sn?a?2n?1(n?N*),其中a是常数,则a?( ) A.?2
B.?1
C.1
D.2
9、已知等比数列|{an}中,有a3a11?4a7,数列{bn}是等差数列,其前n项和为Sn,且b7?a7,则
S13=( )
A.26 B.52 C.78 D.104
10、设{an}为等差数列a1?22,Sn为其前n项和,若S10?S13,则公差d?( ) A.-2
B.-1
C.1
D.2
11、已知等差数列{an}的前n项和为Sn,若a1?1,S3?a5,am?2024,则m?_______.
?1?12、已知数列?an?的前项和为Sn,且Sn?2an?1,则数列??的前6项和为__________.
?an?*13、已知数列?an?中,a1?2,an?1?1?(n?N),则a10? .
an114、已知数列?an?满足 为 .
,a1?33,an?1?an?2n,那么
an的最小值n15、已知数列?an?,若a1?2a2???nan?2n,则数列?anan?1?的前n项和为___。 16、在数列?an?中,a1?1,an?1?an?cos___。
17、已知数列?an?的前项n和为Sn,且满足Sn?2n?2?3,则an?____________。 18、已知Sn为等差数列?an?的前n项和,a3?S5?18,a5?7,若a3,a6,am成等比数列,则m=___。
19、等比数列?an?的各项均为正数,Sn是其前n项和,且满足2S3?8a1?3a2,a4?16 ,则
S4?__________.
nπ,记Sn为数列?an?的前n项和,则S2024的值为220、已知各项均为正数的等差数列{an}满足:a3?3a1,且a1,4,2a2成等比数列. 1.求数列{an}的通项公式;
2.设{an}的前n项和为Sn,令bn?1,求数列{bn}的前n项和Tn
Sn21、已知数列{an}的前n项和Sn满足4an?3Sn?2,其中n?N?. (1).证明:数列{an}为等比数列; (2).设bn?1an?4n,求数列{bn}的前n项和Tn 2?n?n2,n?N*.
22、已知数列?an?的前n项和为Sn,且满足2Sn(1)求数列?an?的通项公式;
?2an,n?2k?1?2(2)设bn??*,求数列?bn?的前2n项和T2n. ,n?2k(k?N)?(1?a)(1?a)nn?2?
答案以及解析
1答案及解析:
答案:C 解析:
2答案及解析: 答案:C 解析:
3答案及解析: 答案:A
解析:由数列{an}的通项公式an?sinnπ知,{an}为最小正周期T?6的周期数列.又3πa3k?sin(?3k)?sinkπ=0,k?N*,
3所以a1?a2?a4?a5?a1?a2?a3?a4?a5?a6?0, 所以
a1?a2?a4?a5?a7?a8?a10?a11?a13?...?a28?a29?a1?a2?a3?...?a30=5(a1?a2?...?a6)=0.故选 A.
4答案及解析: 答案:A 解析:
5答案及解析: 答案:C
?1?1111?11?1??1d?解析:由题意可得a2,a,则等差数列??的公差????,所以
374?a7a3?8?an?1154??2d?,则a9?.
a9a745
6答案及解析: 答案:B
?2a1?7d?23,解析:设等差数列?an?的公差为d.由题意得?,解得d?3.故选B. ?5?45a?d?35,1??2
7答案及解析: 答案:B
?a4?a8??10,解析:由题意得?所以a4?0,a8?0,所以a2a10aa?4,?482?a4a8?a6?4.又在等比数列中,
偶数项的符号相同,所以a6??2,所以a2a6a10?4?(?2)??8,故选B.
8答案及解析: 答案:B
解析:当n?1时,a1?S1?2a?1.当n?2时,an?Sn?Sn?1?a?2n?1?(a?2n?1?1)?a?2n?1,对于上式当n?1时也成立,?2a?1?a,解得a??1.故选B.
9答案及解析: 答案:B
2解析:因为{an}是等比数列,所以a3a11?a7所以a7?4,则b7?4.又{bn}是等差数列,?4a7,
则S13?13(a1?a13)?13a7?52. 2
10答案及解析: 答案:A
解析:方法一:因为a1?22,S10?S13,所以10?22?故选A.
方法二:由题意可得S13?S10?a11?a12?a13?3a12?0,则a12?0,所以公差
10?913?12d?13?22?d,解得d??2,22a12?a10?22???2. 12?111
11答案及解析: d?答案:1010
解析:设等差数列{an}的公差为d,则S3?3a2?3(a1?d),即3(1?d)?1?4d,解得d?2,所以am?a1?(m?1)d?2m?1?2024,解得m?1010.
12答案及解析:
答案:
63 32解析:由题意得Sn?1?2an?1?1?n?2?,?an?2an?2an?1,?an?2an?1,
1?1?因为S1?2a1?1,?a1?1,?an?2n?1,????an?2??1?1????1?632∴数列??的前6项和为???
1a32?n?1?26n?1,
13答案及解析: 答案:2 解析:
14答案及解析: 答案:
21 2解析:
15答案及解析: 答案:
4n n?1解析:∵a1?2a2???nan?2n,∴a1?2a2????n?1?an?1?2?n?1??n?2?,两式相减得
nan?2,∴an?22?n?2?,∴当n?1时,a1?2,满足上式,∴an?,∴nnanan?1?221??1??4???∴nn?1?nn?1?1111111?44n?。 a1a2?a2a3???anan?1?4?1??????????4???22334nn?1n?1n?1??
16答案及解析: 答案:1010 解析:
∵a1?1,an?1?an?cosnππ2π3π?0,a4?a3?cos?0,.∴a2?a1?cos?1,a3?a2?cos 2222a5?a4?cos2π?1 ,如此继续下去,知an?4?an,数列?an?是周期为4的数列,则2S2024?504?a1?a2?a3?a4??a1?a2?a3?504?2?1?1?0?1010.