在小学数学中培养学生的思维能力问题_数
学论文
(2)明确要比较的项目,必须在同一种属性、特点或关系上进行比较。有时在几方面有相同点或不同点,就要引导学生分项依次进行比较。例如引导学生比较长方形和正方形时,先比较它们的边,再比较它们的角,然后综合起来说出它们有什么相同点和不同点。
(3)要引导学生抓住本质的属性。特别是分析不同点时,往往有很多非本质的不同点,不要在这些方面花很大力量。例如,方程解应用题和用算术方法解应用题,在解题时有很多相同点和不同点,但最重要的不同点是:用方程解时把未知量当作已知量直接参加列式,算术解法则把未知量作为解答的目标而不参加列式。学生明确这一点,就抓住用方程解应用题的本质。
(4)对于易混的概念和法则要着重比较它们的相异点。例如1分米、1平方分米和1立方分米,要通过比较,使学生明确它们的实际长短或占空间的大小,弄清它们分别是长度单位、面积单位和体积单位,它们分别与1米、1平方米和1立方米的进率是10、100和1000,从而获得明确的长度单位、面积单位和
体积单位的概念。
3.培养初步的抽象、概括能力。
抽象是在思维中揭示出事物的本质特征,舍弃其非本质特征。有时本质或非本质特征要根据研究的方向和目标而定。例如:下面的几个形体,可以分别研究它们的形状特征。大小特征,颜色特征或制作的材料特征等。
概括则是在思维中把某些事物所抽取出的共同本质特征结合起来,并推广到同类的事物上去。例如,研究大小不同、放的位置也不同的三角形,抽取出它们的共同本质特征,并得出一般结论,即三角形都由三条线段围成的,都有3个角。这就是概括。
显然,抽象、概括与分析、比较、综合有着密切的联系。它们是在分析事物的各自特征的基础上,舍弃其中一些非本质的对我们没有意义的特征或属性,分出本质的对我们有意义的特征或属性,并且通过比较不同的事物,找出它们的共同特征或本质属性,再加以综合。因此可以说,这几种逻辑方法是相互联系、相互渗透的。
抽象、概括在小学数学中有着广泛的应用。任何一个数学概念都是抽象、概括的结果。例如,认数3时,先数3个杯子,数的时候舍弃了杯子的形状、大小、颜色等特征,区分出数量来;再数3支铅笔、3个球,也同样舍弃其他的特征,只区分出数量的特征。经过比较,可以看到这三种物体具有共同的数量特征,即都是3个,于是概括出数目3。认识形也是一样,先拿一个小圆筒,舍弃它的数量、大小、颜色等特征,而抽取出它的形状特征。那么就看到它有上下两个圆面,还有一个侧面是曲面。如果再拿几个小圆筒,大小、颜色虽然不同,但是形状上具有同样的特征,那么就根据它们具有形状的共同特征把它们归为一类,做出概括。