好文档 - 专业文书写作范文服务资料分享网站

(完整word)2024年新人教版八年级下册数学复习提纲

天下 分享 时间: 加入收藏 我要投稿 点赞

方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。 标准差:方差的算术平方根,即

1?x1?x?2??x2?x?2????xn?x?2 S?n

??

数据的分析教学:

知识点:

选用恰当的数据分析数据 知识点详解:

一、5个基本统计量(平均数、众数、中位数、极差、方差)的数学内涵:

平均数:把一组数据的总和除以这组数据的个数所得的商。平均数反映一组数据的平均

水平,平均数分为算术平均数和加权平均数。

众 数:在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数 中位数:将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做

这组数据的中位数.

极 差:是指一组数据中最大数据与最小数据的差。巧计方法,极差=最大值-最小值。 方 差:各个数据与平均数之差的平方的平均数,记作s2 .巧计方法:方差是偏差的平

方的平均数。

标准差:方差的算术平方根,记作S?

二、教学时对五个基本统计量的分析:

1、 算术平均数不难理解易掌握。加权平均数,关键在于理解“权”的含义,权重是一组非负数,权重之和为1,当各数据的重要程度不同时,一般采用加权平均数作为数据的代表值。

学生出现的问题:对“权”的意义理解不深刻,易混淆算术平均数与加权平均数的计算公式。

采取的措施:弄清权的含义和算术平均数与加权平均数的关系。并且提醒学生再求平均数时注意单位。

2、平均数、与中位数、众数的区别于联系。

联系:平均数、中位数和众数都反映了一组数据的集中趋势,其中以平均数的应用最为广泛。

1?x1?x?2??x2?x?2????xn?x?2。 n?? 16 / 18

区别:

A、 平均数的大小与这组数据里每个数据均有关系,任一数据的变动都会引起平均数的变动。

B、中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响。当一组数据中的个别数据变动较大时,可用它来描述其集中趋势。

C、众数主要研究个数据出现的频数,其大小只与这组数据中的某些数据有关,当一组数据中有不少数据多次重复出现时,我们往往关心众数。其中众数的学习是重点。

学生出现的问题:求中位数时忘记排序。对三种数据的意义不能正确理解。 采取的措施:加强概念的分析,多做对比练习。 3、极差,方差和标准差。

方差是重难点,它是描述一组数据的离散程度即稳定性的非常重要的量,离散程度小就越稳定,离散程度大就不稳定,也可称为起伏大。极差、方差、标准差虽然都能反映数据的离散特征,但是,对两组数据来说,极差大的那一组方差不一定大;反过来,方差大的,极差也不一定大。

学生出现的问题:由于方差,标准差的公式较麻烦,在应用时常由于粗心或公式不熟导致错误。

采取的措施:注意方差是“偏差的平方的平均数”这一重要特征。或使用计算器计算。

这些数据经常用来解决一些“选拔”、“决策”类问题。中考中常常综合在一起考察。 4.为了培养学生的环保意识,某校组织课外小组对该市进行空气含尘调查,下面是一天中每2小时测得的数据(单位:g/m3 ): 0.04 0.03 0.02 0.03 0.04 0.01 0.03 0.04 0.03 0.05 0.01 0.03 (1)求出这组数据的众数和中位数; (2)如果对大气飘尘的要求为平均值不超过0.025 g/m3,问这天该城市的空气是否符合要求?为什么?

5. A、B两班在一次百科知识对抗赛中的成绩统计如下: 分数 50 60 70 80 90 100 人数(A班) 3 5 15 3 13 11 人数(B班) 1 6 12 11 15 5 根据表中数据完成下列各题: (1)A班众数为 分,B班众数为 分,从众数看成绩较好的是 班; (2)A班中位数为 分,B班中位数为 分,A班中成绩在中位数以上的(包括中位数)学生所占的百分比是 %,B班中成绩在中位数以上的(包括中位数)学生所占的百分比是 %,从中位数看成绩较好的是 班;

(3)若成绩在85分以上为优秀,则A班优秀率为 %,B班优秀率为 %,从优秀率看成绩较好的是 班.

17 / 18

(4)A班平均数为 分,B班平均数为 分,从平均数看成绩较好的是 班; 6.某酒店共有6名员工,所有员工的工资如下表所示: 人 员 经理 会计 厨师 服务员1 服务员勤杂2 工 月工资(元) 4000 600 900 500 500 400 (1)酒店所有员工的平均月工资是多少元? (2)平均月工资能准确反映该酒店员工工资的一般水平吗?若能,请说明理由.若不能,如何才能较准确地反映该酒店员工工资的一般水平?谈谈你的看法.

【典型例题】

一、选择题

1.一组数据3,5,7,m,n的平均数是6,则m,n的平均数是( ) A.6 B.7 C. 7.5 D. 15

2.小华的数学平时成绩为92分,期中成绩为90分,期末成绩为96分,若按3:3:4的比例计算总评成绩,则小华的数学总评成绩应为( )

A.92 B.93 C.96 D.92.7 3.关于一组数据的平均数、中位数、众数,下列说法中正确的是( ) A.平均数一定是这组数中的某个数 B. 中位数一定是这组数中的某个数 C.众数一定是这组数中的某个数 D.以上说法都不对

4.某小组在一次测试中的成绩为:86,92,84,92,85,85,86,94,92,83,则这个小组本次测试成绩的中位数是( )

A.85 B.86 C.92 D.87.9

5.某人上山的平均速度为3km/h,沿原路下山的平均速度为5km/h,上山用1h,则此人上下山的平均速度为( )

A.4 km/h B. 3.75 km/h C. 3.5 km/h D.4.5 km/h

6.在校冬季运动会上,有15名选手参加了200米预赛,取前八名进入决赛.已知参赛选手成绩各不相同, 某选手要想知道自己是否进入决赛,只需要了解自己的成绩以及全部成绩的( )

A.平均数 B.中位数 C.众数 D.以上都可以 二、填空题:(每小题6分,共42分)

7.将9个数据从小到大排列后,第 个数是这组数据的中位数 8.如果一组数据4,6,x,7的平均数是5,则x = .

9.已知一组数据:5,3,6,5,8,6,4,11,则它的众数是 ,中位数是 . 10.一组数据12,16,11,17,13,x的中位数是14,则x = . 11.某射击选手在10次射击时的成绩如下表: 环数 7 8 9 10 次数 2 4 1 3 则这组数据的平均数是 ,中位数是 ,众数是 . 12.某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,则这个小组的本次测试的平均成绩为 . 13.为了了解某立交桥段在四月份过往车辆承载情况,连续记录了6天的车流量(单位:千辆/日):3.2,3.4,3,2.8,3.4,7,则这个月该桥过往车辆的总数大约为 辆.

18 / 18

(完整word)2024年新人教版八年级下册数学复习提纲

方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。标准差:方差的算术平方根,即1?x1?x?2??x2?x?2????xn?x?2S?n??数据的分析教学:
推荐度:
点击下载文档文档为doc格式
839ph0nsdf0fluh9boav3qhtz4wh2h00tz3
领取福利

微信扫码领取福利

微信扫码分享