好文档 - 专业文书写作范文服务资料分享网站

高 级 植 物 生 理 学,逆境生理

天下 分享 时间: 加入收藏 我要投稿 点赞

高 级 植 物 生 理 学 植物逆境生理

一、 逆境下植物生理过程的变化 二、 细胞超微结构与植物抗逆性 三 、生物膜结构与植物抗逆性

四、 逆境下植物的自由基伤害与保护系统 五、 渗透调节与植物抗逆性

六、 植物抗逆的分子生物学研究进展 七、 植物激素与抗逆性 八、 交叉适应

逆境(environmental stress),就是对植物生长不利的各种环境因子的总称. 植物在长期进化过程中、不同环境下生长的植物形成了对某些环境的适应能力,产生了不同生态类型的植物:

喜温植物、耐寒植物、阳性植物、阴性植物、生水植物、旱生植物、盐生植物、淡土植物、中生植物(mesophyte)介于湿生植物和旱生植物之间,是种类最多、分布最广、数量最大的陆生植物等。

同一生态型植物,甚至不同品种对某些不良环境条件的抗御能力也有程度上的差别。植物逆境的抵抗及适应性,可以从形态和生理两方面表现出来。 形态上:叶片大小、角质和蜡质层、表皮毛、微管束分化程度和根系分化差别等,植物矮小并常成匍匐状、垫状或莲座状等,减少水分丢失,减轻严寒伤害。(长期)形态特征发生变化是长期逆境影响而进化适应结果。

生理上:自由水/束缚水、可溶性糖、脂肪、游离氨基酸、激素变化、渗透调节、特异抗性蛋白等。例如鹿蹄草(pirola)叶片积累大量五碳糖、粘液等物质来降低冰点(-31℃) (短期)。

为了充分认识不良环境条件对植物生命活动的影响,以及植物对它们的抵御能力,在植物生理研究中形成了逆境生理这样一个研究领域。特别注意植物的抗逆性。

植物的抗逆性(stress resistance)泛指植物对不良环境(逆境)的抵抗能力。植物

抗逆性可分为三个方面:

避逆性:(stress escape)指植物通过对生育周期的调整来避开逆境的干扰,在相对适宜的环境中完成其生活史。

例如夏季生长的短命植物,且能随环境而改变自己的生育期。沙漠中某些植物只在雨季生长,如短命菊、小果崧(30天)、瓦松等。

耐逆性:(stress tolerance)指植物处于不利环境时,通过代谢反应来阻止、降低或修复逆境造成的损伤,即通过自身生理变化来适应环境能力。

例如植物遇到干旱或低温时,细胞内的渗透物质会增加,防止细胞脱水,以提高植物的抗逆性。

御逆性:(stress avoidance)指植物具有一定的防御环境胁迫的能力,且在胁迫下仍然保持正常的生长发育状态。

这类植物通常具有根系及输导系统发达,吸水、吸肥能力强,物质运输阻力小,角质层较厚,还原性物质含量高,有机物质的合成快等特点。

植物受到胁迫后产生的相应的变化称为胁变(strain)。胁变可以发生在不同水平上,如整体、器官、组织、细胞和分子水平上(生理生化代谢及分子变化)。

植物抗逆性的研究,着重于一些重要的生理过程变化。 ? 光合作用 ? 呼吸作用 ? 水分

? 物质代谢变化(碳水化合物、氮代谢;次生产物变化等) ? 激素水平(IAA、GA、CTK、ABA及乙烯) ? 酶活性变化(水解酶、合成酶、转化酶,保护酶系统)

通过研究这些生理过程变化,为了解逆境条件下代谢特点提供理论基础。特别是近年来着重对植物抗逆性的分子生物学和分子遗传学等方面的研究。

? 植物抗逆性与蛋白质和基因调控的结构和功能的关系, ? 抗逆与生物膜结构和功能的关系,

? 抗逆基因和基因工程的研究(植物品种改良)。

一、逆境下植物生理过程的变化 1. 逆境与植物水分状况

各种逆境首先普遍会影响到植物体水分状况的变化,在冰冻、低温、高温、干旱、盐渍、病害发生时,植物的水分状况均有相似的变化。水分亏缺时,植物器官水分发生异常分配,影响生理代谢,器官生长发育。植物体水分存在状态有两种,自由水和束缚水,可以反映植物体代谢的强弱;在遇到这些不良环境后,二者的相对高低与植物的抗逆性密切相关。也把它作为植物抗逆性的一个水分指标。

研究植物水分关系主要指标:

相对含水量(relative water content, RWC) 自由水和束缚水含量—马林契克法。

水势 (water potential) —小液流、压力室、热电偶湿度计法。 渗透势 (osmotic potential) —冰点渗透计、热电偶湿度计法。 气孔导度(stomatal conductance) —稳态气孔计、光合测定系统 蒸腾速率(transpiration rate) —稳态气孔计、光合测定系统 细胞质浓度—折光仪或阿贝折射仪、蒸汽压渗透计。

2. 逆境与原生质膜透性

细胞膜的透性在反映植物抗性的差异上是比较敏感的,在冷、冻、旱、热、涝及SO2伤害等方面都表现原生质膜透性增强。大量的电解质和非电解质物质被动的向细胞外渗漏。 膜伤害测定指标:

膜脂的过氧化作用(丙二醛 MDA)

细胞膜透性(电导仪测定,测定组织外渗液的紫外吸收)。 胞内物质向外渗漏原因:

① 原生质膜上ATP酶和有机物质主动运输酶(载体等)活力有关。 ② 而且还与逆境下,细胞失水,原生质膜出现不连续的状态有关(膜脂的过氧化作用)。

③ 也有认为以外渗物质反映原生质膜透性变化时,可能在逆境条件下胞内可溶性物质随水的外流而引起物质外渗。

3. 逆境与光合作用

在任何一种逆境下,植物都表现为光合速率下降,同化产物供应减少,植物在逆境条件下叶片因失水而造成组织含水量减少。逆境引起气孔导度降低,蒸腾减弱,CO2吸收和同化阻力增加,导致光合速率降低。如干旱、高温、污染(大气、土壤)、除草剂、营养胁迫(CO2、矿质元素)等。 逆境下光合下降主要生理原因是:

①气孔调节变化,气孔导度降低或气孔关闭。

②光合相关酶变化,失水造成光合作用有关酶(Rubisco)活力的降低和角质层细胞壁对CO2的透性降低;

③叶绿素含量、光化学活性及光能转化率降低。 测定指标:

? 叶绿素含量(分光光度法,叶绿素仪); ? 净光合速率(光合测定系统); ? 叶绿素荧光(叶绿素荧光仪);

? 光合生产率(叶片干物质g。m-2.d-1)。

(1)不同逆境对光合速率的影响

? 高温、重金属直接影响光合作用细胞器或光系统复合体等光反应。 ? 干旱、大气污染等引起气孔张开度变化,如气孔导度影响光合作用。 ? 盐渍化条件下生长的小麦,叶片光合速率比对照降低30-50%。下降的原因主要是蛋白质分解大于合成。叶绿素分解加强,叶绿素含量下降,致使光和强度降低。盐胁迫对叶绿素含量影响大于其它胁迫条件。 例如:丙酮提取植物叶绿素时,对照25%,干旱为20%,盐胁迫为50%。

每种逆境对各种生理过程影响程度不同。

(2)光合作用光反应中光能转化的荧光分析

叶绿素荧光分析技术是以光合作用理论、利用植物体内叶绿素作为天然探针研究和探测植物光合状况及各种外界因子对光合作用细微影响的植物活体测定和诊断技术。

叶绿素荧光研究技术:测定叶片光合作用过程中光系统对光能的吸收、传递、耗散、分配等方面的情况,叶绿素荧光参数更具有反映“内在性”特点。而气体交换的CO2同化(光合速率)指标则主要反映是 “表观性”的特点。 自然条件下叶绿素荧光和光合速率是相互负关联的,光合速率高,荧光弱;反之,当光合强度下降时,则荧光的发射就增强.

目前,叶绿素荧光分析技术应用于光合作用机理、植物抗逆生理和作物增产潜力预测等方面,研究已取得一定进展。可以快速、灵敏和无损伤地研究和探测完整植株在胁迫下光合作用的真实行为,经常被用于评价光合机构的功能和环境胁迫对其的影响。植物光合过程中荧光特性的探测可以了解植物的生长、及受胁迫等生理状况。

环境因子特别是逆境可以直接或间接反映影响光合作用光能转化过程。荧光产额越大,表明光能转化效率低。一般植物吸收光能化学转化率30%。

①叶绿素荧光动力学研究得到广泛应用的原因

? 叶绿素荧光动力学特性包含着光合作用过程的丰富信息 光能的吸收与转换 能量的传递与分配 反应中心的状态 过剩光能及其耗散

光合作用光抑制与光破坏……等等

? 可以对光合器官进行“无损伤探查”,获得 “原位”的(in situ)信息。 ? 测定仪器的性能和自动化程度越来越高,操作步骤越也来越简便。

高 级 植 物 生 理 学,逆境生理

高级植物生理学植物逆境生理一、逆境下植物生理过程的变化二、细胞超微结构与植物抗逆性三、生物膜结构与植物抗逆性四、逆境下植物的自由基伤害与保护系统五、渗透调节与植物抗逆性六、植物抗逆的分子生物学研究进展七、植物激素与抗逆性八、交叉适应逆
推荐度:
点击下载文档文档为doc格式
82aze4h6jo4oweh0q68m0sr9z0p01l00ny0
领取福利

微信扫码领取福利

微信扫码分享