好文档 - 专业文书写作范文服务资料分享网站

(完整版)低温等离子体

天下 分享 时间: 加入收藏 我要投稿 点赞

什么是低温等离子体?

冰升温至0℃会变成水,如继续使温度升至100℃,那么水就会沸腾成为水蒸气。随着温度的上升,物质的存在状态一般会呈现出固态→液态→气态三种物态的转化过程,我们把这三种基本形态称为物质的三态。那么对于气态物质,温度升至几千度时,将会有什么新变化呢? 由于物质分子热运动加剧,相互间的碰撞就会使气体分子产生电离,这样物质就变成由自由运动并相互作用的正离子和电子组成的混合物(蜡烛的火焰就处于这种状态)。我们把物质的这种存在状态称为物质的第四态,即等离子体(plasma)。因为电离过程中正离子和电子总是成对出现,所以等离子体中正离子和电子的总数大致相等,总体来看为准电中性。反过来,我们可以把等离子体定义为:正离子和电子的密度大致相等的电离气体。

从刚才提到的微弱的蜡烛火焰,我们可以看到等离子体的存在,而夜空中的满天星斗又都是高温的完全电离等离子体。据印度天体物理学家沙哈(M·Saha,1893-1956)的计算,宇宙中的99.9%的物质处于等离子体状态。而我们居住的地球倒是例外的温度较低的星球。此外,对于自然界中的等离子体,我们还可以列举太阳、电离层、极光、雷电等。在人工生成等离子体的方法中,气体放电法比加热的办法更加简便高效,诸如荧光灯、霓虹灯、电弧焊、电晕放电等等。在自

6然和人工生成的各种主要类型的等离子体的密度和温度的数值,其密度为10(单

位:个/m3)的稀薄星际等离子体到密度为1025的电弧放电等离子体,跨越近20个数量级。其温度分布范围则从100K的低温到超高温核聚变等离子体的108-109K(1-10亿度)。 温度轴的单位eV(electron volt)是等离子体领域中常用的温度单位,1eV=11600K。

通常,等离子体中存在电子、正离子和中性粒子(包括不带电荷的粒子如原子或分子以及原子团)等三种粒子。设它们的密度分别为ne,ni,nn,由于准电中性,所以电离前气体分子密度为ne≈nn。于是,我们定义电离度β=ne/(ne+nn),以此来衡量等离子体的电离程度。日冕、核聚变中的高温等离子体的电离度都是100%,像这样β=1的等离子体称为完全电离等离子体。电离度大于1%(β≥10-2)的称为强电离等离子体,像火焰中的等离子体大部分是中性粒子(β<10-3 ),称之为弱电离等离子体。

若放电是在接近于大气压的高气压条件下进行,那么电子、离子、中性粒子会通过激烈碰撞而充分交换动能,从而使等离子体达到热平衡状态。若电子、离子、中性粒子的温度分别为了Te,Ti,Tn,我们把这三种粒子的温度近似相等(Te≈Ti≈Tn)的热平衡等离子体称为热等离子体(thermal plasma),在实际的

热等离子体发生装置中,阴极和阳极间的电弧放电作用使得流入的工作气体发生电离,输出的等离子体呈喷射状,可用作等离子体射流(plasma jet)、等离子体喷焰(plasma torch)等。

另一方面,数百帕以下的低气压等离子体常常处于非热平衡状态。此时,电子在与离子或中性粒子的碰撞过程中几乎不损失能量,所以有Te>>Ti , Te>>Tn。我们把这样的等离子体称为低温等离子体(cold plasma)。当然,即使是在高气压下,低温等离子体还可以通过不产生热效应的短脉冲放电模式即电晕放电(corona discharge)或电弧滑动喷射式放电来生成。大气压下的辉光放电技术目前也已成为世界各国的研究热点。可产生大气压非平衡态等离子体的机理尚不清楚,在高气压下等离子体的输运特性的研究也刚刚起步,现已形成新的研究热点。

低温等离子体的产生方法

1. 辉光放电 2. 电晕放电 3. 介质阻挡放电 4. 射频电晕放电 5. 滑动电弧放电

6. 大气压辉光放电技术 7. 次大气压辉光放电技术

辉光放电(Glow Discharge)

辉光放电属于低气压放电(low pressure discharge),工作压力一般都低于10mbar,其构造是在封闭的容器內放置两个平行的电极板,利用电子将中性原子和分子激发,当粒子由激发态(excited state)降回至基态(ground state)时会以光的形式释放出能量。电源可以为直流电源也可以是交流电源。每种气体都有其典型的辉光放电颜色(如下表所示),荧光灯的发光即为辉光放电。因此,实验时若发现等离子的颜色有误,通常代表气体的纯度有问题,一般为漏气所至。辉光放电是化学等离子体实验的重要工具,但因其受低气压的限制,工业应用难

于连续化生产且应用成本高昂,而无法广泛应用于工业制造中。目前的应用范围仅局限于实验室、灯光照明产品和半导体工业等。

部分气体辉光放电的颜色

Gas Cathode Layer Negative Glow Positive Column He Ne (neon) Ar Kr Xe H2 N2 O2 Air red yellow pink - - red-brown pink red pink pink orange dark-blue green orange-green thin-blue blue yellow-white blue Red-pink red-brown dark-red blue-purple white-green pink red-yellow red-yellow red-yellow

部分气体的辉光放电实例

电晕放电(Corona Discharge)

辉光放电只能在低气压下工作,而电晕放电可以在大气压下工作,但需要足够高的电压以增加电晕部位的电场。一般在高压和强电场的工作条件下,不容易获得稳定的电晕放电,亦容易产生局部的电弧放电(arc)。为提高稳定性可将反应器做成非对称(asymmetric)

的电极形式(如下图所示)。电晕放电反应器的设计主要参考电源的性质而有所不同,有直流电晕放电(DC corona)和脉冲式(pulsed corona)电晕放电。由于电晕放电的范围小、能量低、放电的能量不均匀,通常应用范围仅局限于实验室。

介质阻挡放电(Dielectric Barrier Discharge, DBD)

介质阻挡放电(DBD)是有绝缘介质插入放电空间的一种非平衡态气体放电又称介质阻挡电晕放电或无声放电。介质阻挡放电能够在高气压和很宽的频率范围内工作,通常的工作气压为104~106。电源频率可从50Hz至1MHz。电极结构的设计形式多种多样。在两个放电电极之间充满某种工作气体,并将其中一个或两个电极用绝缘介质覆盖,也可以将介质直接悬挂在放电空间或采用颗粒状的介质填充其中,当两电极间施加足够高的交流电压时,电极间的气体会被击穿而产生放电,即产生了介质阻挡放电。在实际应用中,管线式的电极结构被广泛的应用于各种化学反应器中,而平板式电极结构则被广泛的应用于工业中的高分子和金属薄膜及板材的改性、接枝、表面张力的提高、清洗和亲水改性中。

介质阻挡放电(DBD)常用结构

介质阻挡放电通常是由正弦波型(sinusoidal)、交流(alternating current, AC)和高压电源驱动,随着供给电压的升高,系统中反应气体的状态会经历三个阶段的变化,即会由绝缘状态(insulation)逐渐至击穿(breakdown)最后发生放电。当供給的电压比较低时,虽然有些气体会有一些电离和游离扩散,但因含量太少电流太小,不足以使反应区内的气体出现等离子体反应,此时的电流为零。随着供给电压的逐渐提高,反应区域中的电子也随之增加,但未达到反应气体的击穿电压(breakdown voltage; avalanche voltage)时,两电极间的电场比较低无法提供电子足够的能量使气体分子进行非弹性碰撞,缺乏非弹性碰撞的结果导致电子数不能大量增加,因此,反应气体仍然为绝缘状态,无法产生放电,此时的电流随着电极施加的电压提高而略有增加,但几乎为零。若继续提高供給电压,当两电极间的电场大到足夠使气体分子进行非弹性碰撞时,气体将因为离子化的非弹性碰撞而大量增加,当空间中的电子密度高于一临界值时及帕邢(Paschen)击穿电压时,便产生許多微放电丝(microdischarge)导通在两极之间,同时系統中可明显观察到发光(luminous)的現象此时,电流会随着施加的电压提高而迅速增加。

在介质阻挡放电中,当击穿电压超过帕邢(Paschen)击穿电压时,大量随机分布的微放电就会出现在间隙中,这种放电的外观特征远看貌似低气压下的辉光放电,发出接近兰色的光。近看,则由大量呈现细丝状的细微快脉冲放电构成。只要电极间的气隙均匀,则放电是均匀、漫散和稳定的。这些微放电是由大量快脉冲电流细丝组成,而每个电流细丝在放电空间和时间上都是无规则分布的,放电通道基本为圆柱状,其半径约为0.1~0.3mm,放电持续时间极短,约为10~100ns,但电流密度却可高达0.1~1kA/cm2,每个电流细丝就是一个微放电,在介质表面上扩散成表面放电,并呈现为明亮的斑点。这些宏观特征会随着电极间所加的功率、频率和介质的不同而有所改变。如用双介质并施加足够的功率时,电晕放电会表现出无丝状、均匀的兰色放电,看上去像辉光放电但却不是辉光放电。这种宏观效应可通过透明电极或电极间的气隙直接在实验中观察到。

虽然介质阻挡放电已被开发和广泛的应用,可对它的理论研究还只是近20年来的事,而且仅限于对微放电或对整个放电过程某个局部进行较为详尽的讨论,并没有一种能够适用于各种情况DBD的理论。其原因在于各种DBD的工作条件大不相同,且放电过程中既有物理过程,又有化学过程,相互影响,从最终结果很难断定中间发生的具体过程。

由于DBD在产生的放电过程中会产生大量的自由基和准分子,如OH、O、NO等,它们的化学性质非常活跃,很容易和其它原子、分子或其它自由基发生反应

(完整版)低温等离子体

什么是低温等离子体?冰升温至0℃会变成水,如继续使温度升至100℃,那么水就会沸腾成为水蒸气。随着温度的上升,物质的存在状态一般会呈现出固态→液态→气态三种物态的转化过程,我们把这三种基本形态称为物质的三态。那么对于气态物质,温度升至几千度时,将会有什么新变化呢?由于物质分子热运动加剧,相互间的碰撞就会使气体分子产生电离,这样物质就变成由自由运动并相互作用的正离子和电子组成
推荐度:
点击下载文档文档为doc格式
81hcq3rwbo4oweh0q68m0sr9z0p01l00o18
领取福利

微信扫码领取福利

微信扫码分享