薄膜物理与技术要点总结
———————————————————————————————— 作者: ———————————————————————————————— 日期:
第一章
最可几速率:根据麦克斯韦速率分布规律,可以从理论上推得分子速率在vm处有极大值,vm称为最可几速率平均速度:均方根速度:?2kTm?2RTM?1.41RTM,Vm速度分布
8kT8RTRT?m??m?1.59Mm?3RTM1.73RTM,分子运动平均距离
3kT平均动能
真空的划分:粗真空、低真空、高真空、超高真空。
真空计:利用低压强气体的热传导和压强有关; (热偶真空计)
利用气体分子电离;(电离真空计)
真空泵:机械泵、扩散泵、分子泵、罗茨泵 机械泵:利用机械力压缩和排除气体
扩散泵:利用被抽气体向蒸气流扩散的想象来实现排气作用 分子泵:前级泵利用动量传输把排气口的气体分子带走获得真空。
平均自由程:每个分子在连续两次碰撞之间的路程称为自由程;其统计平均值成为平均自由程。
常用压强单位的换算 1Torr=133.322 Pa 1 Pa=7.5×10-3 Torr 1 mba=100Pa 1atm=1.013*100000Pa 真空区域的划分、真空计、各种真空泵
粗真空 1×105 to 1×102 Pa 低真空 1×102 to 1×10-1 Pa 高真空 1×10-1 to 1×10-6 Pa 超高真空 <1×10-6 Pa 旋转式机械真空泵 油扩散泵 复合分子泵
属于气体传输泵,即通过气体吸入并排出真空泵从而达到排气的目的 分子筛吸附泵 钛升华泵 溅射离子泵 低温泵
属于气体捕获泵,即通过各种吸气材料特有的吸气作用将被抽气体吸除,以达到所需真空。 不需要油作为介质,又称为无油泵 绝对真空计:
U型压力计、压缩式真空计 相对真空计:
放电真空计、热传导真空计、电离真空计
机械泵、扩散泵、分子泵的工作原理,真空计的工作原理 第二章
1.什么是饱和蒸气压?蒸发温度?
饱和蒸气压:在一定温度下,真空室内蒸发物质的蒸气与固体或液体平衡过程中所表现出的压力 蒸发温度:物质在饱和蒸气压为10-2托时的温度。 2.克--克方程及其意义?
2??2PdP?H??克-克方程,可以知道饱和蒸气压和温度的关系,对于薄膜的制作技术有重要实际意义, 帮助我们合理地选择蒸发材料和确定蒸发条件. dTT(Vg?Vs)3.蒸发速率、温度变化对其的影响?
根据气体分子运动论,在气体压力为P时,单位时间内碰撞单位面积器壁上的分子数量,即碰撞分子流量(通量或蒸发速率)J: 在蒸发源以上温度蒸发,蒸发源温度的微小变化即可以引起蒸发速率发生很大变化。 4.平均自由程与碰撞几率的概念?
气体分子处于不规则的热运动状态,每个气体分子在连续两次碰撞之间的路程称为“自由程”,其统计平均值称为“平均自由程”。或者 粒子在两次碰撞之间所飞行的平均距离称为蒸发分子的平均自由程。
蒸发材料分子能与真空室中残余气体分子相互碰撞的数目占总的蒸发材料分子的百分数。
热平衡条件下,单位时间通过单位面积的气体分子数为气体分子对基板的碰撞率。
7.MBE的特点?
外延: 在一定的单晶材料衬底上,沿衬底某个指数晶面向外延伸生长一层单晶薄膜。 1) 2) 3) 4) 5) 6)
MBE可以严格控制薄膜生长过程和生长速率。MBE虽然也是以气体分子论为基础的蒸发过程,但它并不以蒸发温度为控制参数,而是以四极质谱、原子吸收光谱等近代分析仪器,精密控制
分子束的种类和强度。
MBE是一个超高真空的物理淀积过程,即不需要中间化学反应,又不受质量输运的影响,利用快门可对生长和中断进行瞬时控制。薄膜组成和掺杂浓度可以随源的变化作迅速调整。 MBE的衬底温度低,降低了界面上热膨胀引入的晶格失配效应和衬底杂质对外延层自掺杂扩散的影响。
MBE是一个动力学过程,即将入射的中性粒子(原子或分子)一个一个地堆积在衬底上进行生长,而不是一个热力学过程,所以它可以生长普通热平衡生长难以生长的薄膜。 MBE生长速率低,相当于每秒生长一个单原子层,有利于精确控制薄膜厚度、结构和成分,形成陡峭的异质结结构。特别适合生长超晶格材料。 MBE在超高真空下进行,可以利用多种表面分析仪器实时进行成分、结构及生长过程分析,进行科学研究。
8.膜厚的定义?监控方法?
厚度:是指两个完全平整的平行平面之间的距离,是一个可观测到实体的尺寸。理想薄膜厚度:基片表面到薄膜表面之间的距离。由于实际上存在的表面是不平整和不连续的,而且薄膜内部还可能存在着针孔、杂质、晶体缺陷和表面吸附分子等,所以要严格的定义和测准薄膜的厚度实际上比较困难的。膜厚的定义,应该根据测量的方法和目的来决定。
称重法(微量天平法 石英晶体振荡法 ) 电学方法(电阻法 电容法 电离式监控记法) 光学方法(光吸收法 光干涉法 等厚干涉条纹法) 触针法(差动变压器法 阻抗放大法 压电元件法 P50 第三章
1.溅射镀膜和真空镀膜的特点?
优点:1.任何物质都可以溅射,尤其是高熔点、低蒸气压元素化合物2.溅射膜和基板的附着性好3.溅射镀膜密度高,针孔少,且膜层的纯度较高4.膜度可控性和重复性好 缺点:5溅射设备复杂,需要高压装置;6成膜速率较低(0.01-0.5?m)。
2.正常辉光放电和异常辉光放电的特征?
正常辉光放电:在一定电流密度范围内,放电电压维持不变。在正常辉光放电区,阴极有效放电面积随电流增加而增大,从而使有效区内电流密度保持恒定。
异常辉光放电:电流增大时,放电电极间电压升高,且阴极电压降与电流密度和气体压强有关。
??kT 当整个阴极均成为有效放电区域后,只有增加阴极电流密度,才能增大电流,形成均匀而稳定的“异常辉光放电”,并均匀覆盖基片,这个放电区就是溅射区域。
3.射频辉光放电的特点?
1.在辉光放电空间产生的电子可以获得足够的能量,足以产生碰撞电离; 2.由于减少了放电对二次电子的依赖,降低了击穿电压;
3.射频电压可以通过各种阻抗偶合,所以电极可以不是导体材料。 4.溅射的概念及溅射参数?
溅射是指荷能粒子轰击固体表面(靶),使固体原子或者分子从表面射出的现象。 1.溅射阈值2.溅射率及其影响因素3.溅射粒子的速度和能量分布4.溅射原子的角度分布 5.溅射率的计算 5.溅射机理?
溅射现象是被电离气体的离子在电场中加速并轰击靶面,而将能量传递给碰撞处的原子,导致很小的局部区域产生高温,使靶材融化,发生热蒸发。 溅射完全是一个动量转移过程
该理论认为,低能离子碰撞靶时,不能直接从表面溅射出原子,而是把动量传递给被碰撞的原子,引起原子的级联碰撞。这种碰撞沿晶体点阵的各个方向进行。 碰撞因在最紧密排列的方向上最有效,结果晶体表面的原子从近邻原子得到越来越多的能量。
1.溅射率随入射离子能量增大而增大,在离子能量达到一定程度后,由于离子注入效应,溅射率减小; 2.溅射率的大小与入射离子的质量有关;
3.当入射离子能量小于溅射阈值时,不会发生溅射; 4.溅射原子的能量比蒸发原子大许多倍;
5.入射离子能量低时,溅射原子角度分布不完全符合余弦定律,与入射离子方向有关; 6.电子轰击靶材不会发生溅射现象。
6.二极直流溅射、偏压溅射、三极或四极溅射、射频溅射、磁控溅射、离子束溅射结构及原理?
二极直流溅射靶材为良导体,依靠气体放电产生的正离子飞向阴极靶,一次电子飞向阳极,放电依靠正离子轰击阴极所产生的二次电子,经阴极加速后被消耗补充的一次电子维持。
三极或四极溅射: 热阴极发射的电子与阳极产生等离子体,靶相对于该等离子体为负电位.为把阴极发射的电子全部吸引过来,阳极上加正偏压,20V左右。为使放电稳定,增加第四个电极——稳定化电极.
偏压溅射: 基片施加负偏压,在淀积过程中,基片表面将受到气体粒子的稳定轰击,随时消除可能进入薄膜表面的气体,有利于提高薄膜纯度,并且也可除掉粘除力弱的淀积粒子,对基片进行清洗,表面净化,还可改变淀积薄膜的结构。
射频溅射: 可以用射频辉光放电解释。等离子体中的电子容易在射频场中吸收能量并在电场内振荡,与工作气体的碰撞几率增大,从而使击穿电压和放电电压显著降低。
磁控溅射:使用了磁控靶,施加磁场来改变电子的运动方向,束缚并延长电子运动轨迹,进而提高电子对工作气体的电离效率和溅射沉积率。在阴极靶的表面上形成一个正交的电磁场。 溅射产生的二次电子在阴极位降区内被加速成为高能电子,但是它并不直接飞向阳极,而在电场和磁场的作用下作摆线运动。高能电子束缚在阴极表面与工作气体分子发生碰撞,传递能量,并成为低能电子。
离子束溅射:离子源、屏蔽罩。由大口径离子束发生源引出惰性气体,使其照射在靶上产生建设作用,利用溅射出的粒子淀积在基片上制得薄膜。 第五章
1.CVD热力学分析的主要目的?
CVD热力学分析的主要目的是预测某些特定条件下某些CVD反应的可行性(化学反应的方向和限度)。在温度、压强和反应物浓度给定的条件下,热力学计算能从理论上给出沉积薄膜的量和所有气体的分压,但是不能给出沉积速率。热力学分析可作为确定CVD工艺参数的参考 2.CVD过程自由能与反应平衡常数的过程判据?
?GrKP
?Gr??2.3RTlogKP