ºÃÎĵµ - רҵÎÄÊéд×÷·¶ÎÄ·þÎñ×ÊÁÏ·ÖÏíÍøÕ¾

רÉý±¾¸ßµÈÊýѧ(¶þ)±Ê¼Ç´óÈ«

ÓÉ ÌìÏ ·ÖÏí ʱ¼ä£º ¼ÓÈëÊÕ²Ø ÎÒҪͶ¸å µãÔÞ

µÚÒ»Õº¯Êý¡¢¼«ÏÞºÍÁ¬Ðø

¡ì 1.1 º¯Êý

Ò»¡¢

Ö÷ÒªÄÚÈÝ

¢åº¯ÊýµÄ¸ÅÄî

1.

º¯ÊýµÄ¶¨Ò壺y=f(x), x € D ¶¨ÒåÓò£ºD(f),

ÖµÓò:Z(f).

2.·Ö¶Îº¯Êý :y

f (x) x D1 g(x)

x

D2

3.Òþº¯Êý£º F(x,y)4.·´º¯Êý£º =y=f(x)

=0

-1

(y)

T x= $ (y)=f

y=f

-1

(x)

¶¨Àí£ºÈç¹ûº¯Êý£ºy=f(x), D(f)=X, Z(f)=Y

ÊÇÑϸñµ¥µ÷Ôö¼Ó(»ò¼õÉÙ)µÄ£» ÔòËü±Ø¶¨´æÔÚ·´º¯Êý£º

y=f -1(x), D(f -1 )=Y, Z(f -1 )=X

ÇÒÒ²ÊÇÑϸñµ¥µ÷Ôö¼Ó(»ò¼õÉÙ)µÄ¡£

¢æº¯ÊýµÄ¼¸ºÎÌØÐÔ

1. º¯ÊýµÄµ¥µ÷ÐÔ£ºy=f(x),x € D,X1¡¢X2€ D

µ± X1V X2 ʱ,Èô f(x 1) < f(x 2),

Ôò³Æf(x)ÔÚDÄÚµ¥µ÷Ôö¼Ó();

Èô f(x 1) > f(x 2),

Ôò³Æf(x)ÔÚDÄÚµ¥µ÷¼õÉÙ();

Èô f(x 1) v f(x 2),

Ôò³Æf(x)ÔÚDÄÚÑϸñµ¥µ÷Ôö¼Ó();

Èô f(x 1) > f(x 2),

Ôò³Æf(x)ÔÚDÄÚÑϸñµ¥µ÷¼õÉÙ()¡£

2. º¯ÊýµÄÆæżÐÔ£ºD(f)¹ØÓÚÔ­µã¶Ô³Æ

żº¯Êý£ºf(-x)=f(x) Æ溯Êý£ºf(-x)=-f(x)

3. º¯ÊýµÄÖÜÆÚÐÔ£º

ÖÜÆÚº¯Êý£ºf(x+T)=f(x), x € (- +8)

ÖÜÆÚ£ºT¨D¨D×îСµÄÕýÊý

4. º¯ÊýµÄÓнçÐÔ£º|f(x)|

< M , x € (a,b)

¢ç»ù±¾³õµÈº¯Êý

1. ³£Êýº¯Êý£ºy=c , (cΪ³£Êý) 2. Ä»º¯Êý£º y=x n , (n ΪʵÊý) 3. Ö¸Êýº¯Êý£ºy= ax , (a > 0¡¢1) 4. ¶ÔÊýº¯Êý£º y=log a x ,(a > 0¡¢a ·á 1) 5. Èý½Çº¯Êý£º y=sin x , y=con x

y=ta n x , y=cot x y=secx , y=cscx

6. ·´Èý½Çº¯Êý£º y=arcsin x, y=arccon x

1 / 261 / 26

y=arcta n x, y=arccot x

¢è¸´ºÏº¯ÊýºÍ³õµÈº¯Êý

1. ¸´ºÏº¯Êý£ºy=f(u) , u= $ (x)

2 / 261 / 26

y=f[ $ (x)] , x € X

2. ³õµÈº¯Êý : ÓÉ»ù±¾³õµÈº¯Êý¾­¹ýÓÐÏ޴εÄËÄÔòÔËË㣨¼Ó¡¢¼õ¡¢³Ë¡¢³ý£©ºÍ¸´ºÏËù¹¹³ÉµÄ£¬²¢ÇÒÄÜÓÃÒ»¸öÊýѧʽ×Ó±íʾµÄº¯

Êý

¡ì1.2 ¼« ÏÞ

Ò»¡¢ Ö÷ÒªÄÚÈÝ ¢å¼«Ï޵ĸÅÄî

1. ÊýÁеļ«ÏÞ : lim yn A n

³ÆÊýÁÐ

y

n ÒÔ³£Êý A Ϊ¼«ÏÞ ;

»ò³ÆÊýÁÐ

y

n ÊÕÁ²ÓÚ A.

y

¶¨Àí : Èô

n µÄ¼«ÏÞ´æÔÚ

2.

º¯ÊýµÄ¼«ÏÞ£º

¢Åµ±

x

ʱ£¬

f(x)

lim f (x) A

x

limx

f (x) A

¢Æµ±

x

x0 ʱ£¬ f ( x)

lim

f ( x) A

x x 0

×ó¼«ÏÞ£º

lim f ( x )

x x 0

ÓÒ¼«ÏÞ£º

x x

lim f ( x)

0

¢Çº¯Êý¼«ÏÞ´æµÄ³äÒªÌõ¼þ£º ¶¨Àí£º x

limx0 f (x) A

¢æÎÞÇî´óÁ¿ºÍÎÞÇîСÁ¿

yn ±Ø¶¨Óнç

µÄ¼«ÏÞ£º

lim f (x)x

µÄ¼«ÏÞ£º

A A

lim f (x)

x x0

3 / 261 / 26lim f (x) A

x x0

i.ÎÞÇî´óÁ¿£º

lim f(x)

f(x)

ΪÎÞÇî´óÁ¿¡£

³ÆÔڸñ仯¹ý³ÌÖÐ

XÔÙij¸ö±ä»¯¹ý³ÌÊÇÖ¸£º

X

, X

, X

,

x

X),

Xo, X Xo

2.

ÎÞÇîСÁ¿£º

lim f (X)

0

³ÆÔڸñ仯¹ý³ÌÖÐ

f

(x)

ΪÎÞÇîСÁ¿¡£

3.

ÎÞÇî´óÁ¿ÓëÎÞÇîСÁ¿µÄ¹Øϵ£º

¶¨Àí£ºlim

f (X ) 0 lim

1

f ( x)

4.

ÎÞÇîСÁ¿µÄ±È½Ï£º

lim

0, lim ¢ÅÈô

lim

0

£¬Ôò³ÆBÊDZÈa½Ï¸ß½×µÄÎÞÇîСÁ¿;

¢ÆÈôlim

C

(cΪ³£Êý)£¬Ôò³ÆBÓëaͬ½×µÄÎÞÇîСÁ¿;

¢ÇÈô

lim

¡ª

1

£¬Ôò³ÆBÓëaÊǵȼ۵ÄÎÞÇîСÁ¿£¬¼Ç×÷£ºB?a£»

¢ÈÈô

lim ¡ª¡ª

£¬Ôò³ÆBÊDZÈa½ÏµÍ½×µÄÎÞÇîСÁ¿¡£

¶¨Àí£ºÈô£ºi ~

1

,

2

~

2

£»

Ôò£º

lim Ê¿ lim Ê®

¢çÁ½Ãæ¼Ð¶¨Àí

1. ÊýÁм«ÏÞ´æÔÚµÄÅж¨×¼Ôò£º

É裺

yn Xn

Z

n

(n=1¡¢2¡¢3¡­)

ÇÒ£º

lim y n

lim zn

a

n

n

Ôò£º

lim n

Xn a 2.

º¯Êý¼«ÏÞ´æÔÚµÄÅж¨×¼Ôò:

4 / 261 / 26

(f (x) 0

0 )

É裺¶ÔÓÚµãX0µÄij¸öÁÚÓòÄÚµÄÒ»Çе㠣¨µãX0³ýÍ⣩ÓУº

g£¨x£© f£¨x£© h£¨x£©

ÇÒ£º

lim g(x) lim h(x) A

x X0

x xo

Jim f (x) Ax X

o

¢è¼«ÏÞµÄÔËËã¹æÔò

Èô:

lim u(x) A, lim v(x) B

Ôò£º¢Ù

lim[u(x) v(x)] limu(x) limv(x) A B

¢Ú

lim[ u(x) v(x)] lim u(x) lim v(x) A B

u(x) lim u(x) A

lim

¢Û

V(x)ʱ B (

limv

(x)0)

ÍÆÂÛ£º¢Ù

lim[ ui(x) U2(x)

Un(x)]

lim u1 (x) lim u2(x) lim un(x)

¢Ú

lim[ c u(x)] c lim u(x)

¢Û

lim[ u(x)]

[lim u(x)]

¢éÁ½¸öÖØÒª¼«ÏÞ

lim sin x

lim

sin (x)

x 0 x

(x)

0

(x)

1

lim 1 x 2.

lim (1 x)x e

x £¨1 -x£©x

e x 0

¡ì 1.3Á¬Ðø Ò»¡¢

Ö÷ÒªÄÚÈÝ

¢åº¯ÊýµÄÁ¬ÐøÐÔ

1.º¯ÊýÔÚ

x

0´¦Á¬Ðø:

f (x)

ÔÚ µÄÁÚÓòÄÚÓж¨Òå,

X¡£

5 / 261 / 26

81aft8snet97tl37kuug5o77k30e1i00qv2
ÁìÈ¡¸£Àû

΢ÐÅɨÂëÁìÈ¡¸£Àû

΢ÐÅɨÂë·ÖÏí