µÚÒ»Õº¯Êý¡¢¼«ÏÞºÍÁ¬Ðø
¡ì 1.1 º¯Êý
Ò»¡¢
Ö÷ÒªÄÚÈÝ
¢åº¯ÊýµÄ¸ÅÄî
1.
º¯ÊýµÄ¶¨Ò壺y=f(x), x € D ¶¨ÒåÓò£ºD(f),
ÖµÓò:Z(f).
2.·Ö¶Îº¯Êý :y
f (x) x D1 g(x)
x
D2
3.Òþº¯Êý£º F(x,y)4.·´º¯Êý£º =y=f(x)
=0
-1
(y)
T x= $ (y)=f
y=f
-1
(x)
¶¨Àí£ºÈç¹ûº¯Êý£ºy=f(x), D(f)=X, Z(f)=Y
ÊÇÑϸñµ¥µ÷Ôö¼Ó(»ò¼õÉÙ)µÄ£» ÔòËü±Ø¶¨´æÔÚ·´º¯Êý£º
y=f -1(x), D(f -1 )=Y, Z(f -1 )=X
ÇÒÒ²ÊÇÑϸñµ¥µ÷Ôö¼Ó(»ò¼õÉÙ)µÄ¡£
¢æº¯ÊýµÄ¼¸ºÎÌØÐÔ
1. º¯ÊýµÄµ¥µ÷ÐÔ£ºy=f(x),x € D,X1¡¢X2€ D
µ± X1V X2 ʱ,Èô f(x 1) < f(x 2),
Ôò³Æf(x)ÔÚDÄÚµ¥µ÷Ôö¼Ó();
Èô f(x 1) > f(x 2),
Ôò³Æf(x)ÔÚDÄÚµ¥µ÷¼õÉÙ();
Èô f(x 1) v f(x 2),
Ôò³Æf(x)ÔÚDÄÚÑϸñµ¥µ÷Ôö¼Ó();
Èô f(x 1) > f(x 2),
Ôò³Æf(x)ÔÚDÄÚÑϸñµ¥µ÷¼õÉÙ()¡£
2. º¯ÊýµÄÆæżÐÔ£ºD(f)¹ØÓÚÔµã¶Ô³Æ
żº¯Êý£ºf(-x)=f(x) Æ溯Êý£ºf(-x)=-f(x)
3. º¯ÊýµÄÖÜÆÚÐÔ£º
ÖÜÆÚº¯Êý£ºf(x+T)=f(x), x € (- +8)
ÖÜÆÚ£ºT¨D¨D×îСµÄÕýÊý
4. º¯ÊýµÄÓнçÐÔ£º|f(x)|
< M , x € (a,b)
¢ç»ù±¾³õµÈº¯Êý
1. ³£Êýº¯Êý£ºy=c , (cΪ³£Êý) 2. Ä»º¯Êý£º y=x n , (n ΪʵÊý) 3. Ö¸Êýº¯Êý£ºy= ax , (a > 0¡¢1) 4. ¶ÔÊýº¯Êý£º y=log a x ,(a > 0¡¢a ·á 1) 5. Èý½Çº¯Êý£º y=sin x , y=con x
y=ta n x , y=cot x y=secx , y=cscx
6. ·´Èý½Çº¯Êý£º y=arcsin x, y=arccon x
1 / 261 / 26
y=arcta n x, y=arccot x
¢è¸´ºÏº¯ÊýºÍ³õµÈº¯Êý
1. ¸´ºÏº¯Êý£ºy=f(u) , u= $ (x)
2 / 261 / 26
y=f[ $ (x)] , x € X
2. ³õµÈº¯Êý : ÓÉ»ù±¾³õµÈº¯Êý¾¹ýÓÐÏ޴εÄËÄÔòÔËË㣨¼Ó¡¢¼õ¡¢³Ë¡¢³ý£©ºÍ¸´ºÏËù¹¹³ÉµÄ£¬²¢ÇÒÄÜÓÃÒ»¸öÊýѧʽ×Ó±íʾµÄº¯
Êý
¡ì1.2 ¼« ÏÞ
Ò»¡¢ Ö÷ÒªÄÚÈÝ ¢å¼«Ï޵ĸÅÄî
1. ÊýÁеļ«ÏÞ : lim yn A n
³ÆÊýÁÐ
y
n ÒÔ³£Êý A Ϊ¼«ÏÞ ;
»ò³ÆÊýÁÐ
y
n ÊÕÁ²ÓÚ A.
y
¶¨Àí : Èô
n µÄ¼«ÏÞ´æÔÚ
2.
º¯ÊýµÄ¼«ÏÞ£º
¢Åµ±
x
ʱ£¬
f(x)
lim f (x) A
x
limx
f (x) A
¢Æµ±
x
x0 ʱ£¬ f ( x)
lim
f ( x) A
x x 0
×ó¼«ÏÞ£º
lim f ( x )
x x 0
ÓÒ¼«ÏÞ£º
x x
lim f ( x)
0
¢Çº¯Êý¼«ÏÞ´æµÄ³äÒªÌõ¼þ£º ¶¨Àí£º x
limx0 f (x) A
¢æÎÞÇî´óÁ¿ºÍÎÞÇîСÁ¿
yn ±Ø¶¨Óнç
µÄ¼«ÏÞ£º
lim f (x)x
µÄ¼«ÏÞ£º
A A
lim f (x)
x x0
3 / 261 / 26lim f (x) A
x x0
i.ÎÞÇî´óÁ¿£º
lim f(x)
f(x)
ΪÎÞÇî´óÁ¿¡£
³ÆÔڸñ仯¹ý³ÌÖÐ
XÔÙij¸ö±ä»¯¹ý³ÌÊÇÖ¸£º
X
, X
, X
,
x
X),
Xo, X Xo
2.
ÎÞÇîСÁ¿£º
lim f (X)
0
³ÆÔڸñ仯¹ý³ÌÖÐ
f
(x)
ΪÎÞÇîСÁ¿¡£
3.
ÎÞÇî´óÁ¿ÓëÎÞÇîСÁ¿µÄ¹Øϵ£º
¶¨Àí£ºlim
f (X ) 0 lim
1
f ( x)
4.
ÎÞÇîСÁ¿µÄ±È½Ï£º
lim
0, lim ¢ÅÈô
lim
0
£¬Ôò³ÆBÊDZÈa½Ï¸ß½×µÄÎÞÇîСÁ¿;
¢ÆÈôlim
C
(cΪ³£Êý)£¬Ôò³ÆBÓëaͬ½×µÄÎÞÇîСÁ¿;
¢ÇÈô
lim
¡ª
1
£¬Ôò³ÆBÓëaÊǵȼ۵ÄÎÞÇîСÁ¿£¬¼Ç×÷£ºB?a£»
¢ÈÈô
lim ¡ª¡ª
£¬Ôò³ÆBÊDZÈa½ÏµÍ½×µÄÎÞÇîСÁ¿¡£
¶¨Àí£ºÈô£ºi ~
1
,
2
~
2
£»
Ôò£º
lim Ê¿ lim Ê®
¢çÁ½Ãæ¼Ð¶¨Àí
1. ÊýÁм«ÏÞ´æÔÚµÄÅж¨×¼Ôò£º
É裺
yn Xn
Z
n
(n=1¡¢2¡¢3¡)
ÇÒ£º
lim y n
lim zn
a
n
n
Ôò£º
lim n
Xn a 2.
º¯Êý¼«ÏÞ´æÔÚµÄÅж¨×¼Ôò:
4 / 261 / 26
(f (x) 0
0 )
É裺¶ÔÓÚµãX0µÄij¸öÁÚÓòÄÚµÄÒ»Çе㠣¨µãX0³ýÍ⣩ÓУº
g£¨x£© f£¨x£© h£¨x£©
ÇÒ£º
lim g(x) lim h(x) A
x X0
x xo
Jim f (x) Ax X
o
¢è¼«ÏÞµÄÔËËã¹æÔò
Èô:
lim u(x) A, lim v(x) B
Ôò£º¢Ù
lim[u(x) v(x)] limu(x) limv(x) A B
¢Ú
lim[ u(x) v(x)] lim u(x) lim v(x) A B
u(x) lim u(x) A
lim
¢Û
V(x)ʱ B (
limv
(x)0)
ÍÆÂÛ£º¢Ù
lim[ ui(x) U2(x)
Un(x)]
lim u1 (x) lim u2(x) lim un(x)
¢Ú
lim[ c u(x)] c lim u(x)
¢Û
lim[ u(x)]
[lim u(x)]
¢éÁ½¸öÖØÒª¼«ÏÞ
lim sin x
lim
sin (x)
x 0 x
(x)
0
(x)
1
lim 1 x 2.
lim (1 x)x e
x £¨1 -x£©x
e x 0
¡ì 1.3Á¬Ðø Ò»¡¢
Ö÷ÒªÄÚÈÝ
¢åº¯ÊýµÄÁ¬ÐøÐÔ
1.º¯ÊýÔÚ
x
0´¦Á¬Ðø:
f (x)
ÔÚ µÄÁÚÓòÄÚÓж¨Òå,
X¡£
5 / 261 / 26
רÉý±¾¸ßµÈÊýѧ(¶þ)±Ê¼Ç´óÈ«



