好文档 - 专业文书写作范文服务资料分享网站

结构延性与抗震设计

天下 分享 时间: 加入收藏 我要投稿 点赞

结构延性与抗震设计

一、结构在地震下的主要特点

地震以波的形式从震源(地面上的相对位置称震中)向周围快速传播,通过岩土和地基,使建筑物的基础和上部结构产生不规则的往复振动和激烈的变形。结构在地震时发生的相应运动称为地震反应,包括位移、速度、加速度。同时,结构内部发生很大的内力(应力)和变形,当它们超过了材料和构件的各项极限值后,结构将出现各种不同程度的破坏现象,例如混凝土裂缝,钢筋屈服,显著的残余变形,局部的破损,碎块或构件坠落,整体结构倾斜,甚至倒塌等等。

在震中区附近,地面运动的垂直方向振动激烈,且频率高,水平方向振动较弱;距震中较远处,垂直方向的振动衰减快,其加速度峰值约为水平方向加速度峰值的1/2~1/3.因此,对地震区的大部分建筑而言,水平方向的振动是引起结构强烈反应和破坏的主要因素。钢筋混凝土结构在地震作用下受力性能的主要特点有:

1、结构的抗震能力和安全性,不仅取决于构件的(静)承载力,还在很大程度上取决于其变形性能和动力响应。地震时结构上作用的“荷载”是结构反应加速度和质量引起的惯性力,它不像静荷载那样具有确定的数值。变形较大,延性好的结构,能够耗散更多的地震能量,地震的反应就减小,“荷载”小,町能损伤轻而更为安全。相反,静承载力大的结构,可能因为刚度大、重量大、延性差而招致更严重的破坏。 2、屈服后的工作阶段——当发生的地震达到或超出设防烈度时,按照

我国现行规范的设计原则和方法,钢筋混凝土结构一般都将出现不同程度的损伤。构件和节点受力较大处普遍出现裂缝,有些宽度较大;部分受拉钢筋屈服,有残余变形;构件表面局部破损剥落等。但结构不致倒塌。

3、“荷载”低周的反复作用——地震时结构在水平方向的往复振动,使结构的内力(主要是弯矩和剪力,有时也有轴力)发生正负交变。由于地震的时间不长且结构具有阻尼,荷载交变的反复次数不多(即低周)。所以,必须研究钢筋混凝土构件在低周交变荷载作用下的滞回特征。

4、变形大——地震时结构有很大变形。例如桥墩的侧向位移等。一方面对结构本身产生不利影响,如柱的二阶(P—A)效应,增大附加弯矩,甚至引起失稳或倾覆,构造缝相邻结构的碰撞等;另一方面造成非结构部件的破损,桥梁上部结构的脱落等破坏。故抗震结构设计时要控制其总变形。 二、单调荷载下的延性

1、材料、构件或结构的延性通常定义为在初始强度没有明显退化情况下的非弹性变形的能力。它包括两个方面的能力:

(1)承受较大的非弹性变形,同时强度没有明显下降的能力。 (2)利用滞回特性吸收能量的能力。

图10-1的广义力一变形(9—D)曲线可以概括地说明延性的概念。其中一条曲线在经过弹性变形、塑性应变之后在硬化充分发展后软化;

而另一条在达到其承载能力之后没有或几乎没有硬化过程而直接软化,有明显的尖峰。前者称为延性而后者称为脆性。

在实际工程中判断结构的脆性或延性有重大的意义,可从延性结构的优越性加以说明:

(1)破坏前有明显预兆,破坏过程缓慢,因而可采用偏小的计算安全可靠度。

(2)出现非预计荷载,例如偶然超载,荷载反向,温度升高或基础沉降引起附加内力等情况下,有较强的承受和抗衡能力。 (3)有利于实现超静定结构的内力充分重分布。

(4)在承受动力作用(如振动、地震、爆炸等)情况下,能减小惯性力,吸收更大动能,减轻破坏程度,有利于修复。

(5)延性结构的后期变形能力,可以作为各种意外情况时的安全储备。 2.延性指标

在利用延性特性设计抗震结构时,首先必须确定度量延性的量化指标。衡量结构和材料的延性一般用延性系数,其定义为:在保持结构或材料的基本承载能力的情况下,极限变形0u和初始屈服变形D,的比值,即:

当广义变形D定义为具体物理量时,就有相应的延性系数,如截面曲率延性系数^/P\构件或结构的位移延性系数B、转角延性系数B等,则:

最常用的是曲率延性系数(也称曲率延性比)和位移延性系数(也称

结构延性与抗震设计

结构延性与抗震设计一、结构在地震下的主要特点地震以波的形式从震源(地面上的相对位置称震中)向周围快速传播,通过岩土和地基,使建筑物的基础和上部结构产生不规则的往复振动和激烈的变形。结构在地震时发生的相应运动称为地震反应,包括位移、速度、加速度。同时,结构内部发生很大的内力(应力)和变形,当它们超过了材料和构件的各项极限值后,结构将出现各种不同程度的破坏现象,例
推荐度:
点击下载文档文档为doc格式
80p1u6rspa9ersa9pruq6ksx797jw500wll
领取福利

微信扫码领取福利

微信扫码分享