好文档 - 专业文书写作范文服务资料分享网站

2018年普通高等学校招生全国统一考试数学试题理全国卷2及答案[经典版].doc

天下 分享 时间: 加入收藏 我要投稿 点赞

2018年普通高等学校招生全国统一考试数学试题 理(全国卷2)

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.作答时,将答案写在答题卡上。写在本试卷及草稿纸上无效。 3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1. A.

B.

C.

D.

【答案】D

【解析】分析:根据复数除法法则化简复数,即得结果. 详解:

选D.

点睛:本题考查复数除法法则,考查学生基本运算能力. 2. 已知集合

A. 9 B. 8 C. 5 D. 4 【答案】A

【解析】分析:根据枚举法,确定圆及其内部整点个数. 详解: 当当当

时,时,时,

; ; ;

,则中元素的个数为

所以共有9个,选A.

点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别. 3. 函数

的图像大致为

1

A. A B. B C. C D. D 【答案】B

【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像. 详解:

舍去D;

所以舍去C;因此选B.

点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复. 4. 已知向量,满足

,则

为奇函数,舍去A,

A. 4 B. 3 C. 2 D. 0 【答案】B

【解析】分析:根据向量模的性质以及向量乘法得结果. 详解:因为所以选B.

点睛:向量加减乘: 5. 双曲线A. 【答案】A

【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.

B.

的离心率为,则其渐近线方程为 C.

D.

2

详解:

因为渐近线方程为点睛:已知双曲线方程6. 在A.

中, B.

C.

, D.

,所以渐近线方程为

,选A.

.

求渐近线方程:,则

【答案】A

【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB. 详解:因为所以

,选A.

点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的. 7. 为计算

,设计了下面的程序框图,则在空白框中应填入

A. B. C. D.

【答案】B

【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为

3

隔项. 详解:由

在空白框中应填入

,选B.

得程序框图先对奇数项累加,偶数项累加,最后再相减.因此

点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.

8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如两个不同的数,其和等于30的概率是 A.

B.

C.

D.

.在不超过30的素数中,随机选取

【答案】C

【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.

详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有

种方法,因为

,选C.

,所以随机选取两个不同的数,

其和等于30的有3种方法,故概率为

点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.

9. 在长方体为 A. B. 【答案】C

C.

D.

中,

,则异面直线

所成角的余弦值

4

【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.

详解:以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则

,所以

因为

,所以异面直线

, 与

所成角的余弦值为,选C.

点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”. 10. 若

A. B. C. 【答案】A

【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值 详解:因为所以由因此点睛:函数(1)

. (2)周期

得,

,从而的最大值为,选A. 的性质: (3)由

求对称轴, (4)由

是减函数,则的最大值是 D.

求增区间;

由11. 已知

是定义域为

A.

B. 0 C. 2 D. 50 【答案】C

【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 详解:因为

是定义域为

的奇函数,且

求减区间. 的奇函数,满足

.若

,则

5

2018年普通高等学校招生全国统一考试数学试题理全国卷2及答案[经典版].doc

2018年普通高等学校招生全国统一考试数学试题理(全国卷2)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.作答时,将答案写在答题卡上。写在本试卷及草稿纸上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要
推荐度:
点击下载文档文档为doc格式
80f4u61apd4zk8m0hvkq6k2tg1xudp00s6v
领取福利

微信扫码领取福利

微信扫码分享